# ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ, СИСТЕМНИЙ АНАЛІЗ / INFORMATION TECHNOLOGIES, SYSTEMS ANALYSIS

УДК 539.3 UDC 539.3 DOI: 10.33744/0365-8171-2022-112-261-270

# МАТЕМАТИЧНЕ ТА КОМП'ЮТЕРНЕ МОДЕЛЮВАННЯ КОНТАКТНОЇ ВЗАЄМОДІЇ ТРАНСВЕРСАЛЬНО-ІЗОТРОПНИХ ПРУЖНИХ ПІВПРОСТОРІВ ЗА ПРИСУТНОСТІ МІЖ НИМИ ЖОРСТКОГО ПЛОСКОГО ВКЛЮЧЕННЯ ДОВІЛЬНОЇ ФОРМИ

#### MATHEMATICAL AND COMPUTER MODELING OF THE CONTACT INTERACTION OF TRANSVERSALLY ISOTROPIC ELASTIC HALF-SPACES IN THE PRESENCE OF A RIGID FLAT INCLUSION BETWEEN THEM



Кирилюк Віталій Семенович, доктор фізико-математичних наук, Інститут механіки ім. С.П. Тимошенка НАН України, провідний науковий співробітник, відділ теорії коливань, e-mail: <u>kirilyuk v@ukr.net</u>

https://orcid.org/0000-0002-8513-0378



**Левчук Ольга Іванівна**, кандидат фізико-математичних наук, Інститут механіки ім. С.П. Тимошенка НАН України, старший науковий співробітник, відділ теорії коливань, e-mail: <u>2013levchuk@gmail.com</u>

https://orcid.org/0000-0002-6514-622



Гавриленко Валерій Володимирович, доктор фізико-математичних наук, професор, Національний транспортний університет, завідувач кафедри інформаційних систем і технологій, факультет транспортних та інформаційних технологій, e-mail: <u>v gavr@ukr.net</u>

https://orcid.org/0000-0001-9682-4204



Вітер Михайло Богданович, кандидат фізико-математичних наук, Національний транспортний університет, доцент, професор кафедри інформаційних систем та технологій, факультет транспортних та інформаційних технологій, e-mail: <u>mbviter@gmail.com</u>

https://orcid.org/0000-0003-4109-005X

Анотація. Проведено математичне та комп'ютерне моделювання контактної взаємодії двох різних за властивостями трансверсально-ізотропних пружних півпросторів за присутності жорсткого плоского включення між ними при стисканні. На основі представлення загального розв'язку системи рівнянь рівноваги для трансверсально-ізотропного тіла через гармонійні функції встановлена відповідність між параметрами контактної взаємодії для двох трансверсально-ізотропних та двох ізотропних пружних півпросторів (за присутності між ними жорсткого плоского включення довільної форми), що узагальнює результат Гладвела на випадок взаємодії трансверсально-ізотропних півпросторів. На основі математичного та комп'ютерного моделювання досліджено контактну взаємодію трансверсально-ізотропних півпросторів з дископодібним включенням. Проведено аналіз числових результатів, вивчено вплив пружних властивостей півпросторів, геометричних розмірів включення на параметри контактної взаємодії.

**Ключові слова**: математичне та комп'ютерне моделювання, трансверсально-ізотропний матеріал, пружний півпростір, жорстке плоске включення, довільна форма, параметри контакту.

**Вступ.** У різних галузях промисловості при створенні елементів конструкцій широко застосовуються біматеріали, складові яких мають різні фізичні властивості, в тому числі анізотропні. Це, у свою чергу, стимулює інтерес до вивчення і аналізу розподілу напружень у таких тілах поблизу концентраторів напружень, а також при їх контактній взаємодії. У той же час, розв'язання просторових задач теорії пружності для анізотропних тіл ускладнюється, оскільки у цьому випадку необхідно розв'язувати граничну задачу для система рівнянь рівноваги анізотропного тіла, яка має суттєво складнішу структуру (у порівнянні з відповідною системою для ізотропного пружного тіла).

Контактна взаємодія трансверсально-ізотропних тіл зі штампами та між собою досліджувалась у ряді робіт, серед яких можна виділити статті [1-7]. Так робота [1] містить цікаві результати стосовно контакту трансверсально-ізотропних тіл за наявності адгезії, робота [2] – стосовно тангенціальних навантажень на штамп при контакті з півпростором, у статті [3] вивчено контактну взаємодію півпростора зі штампом еліптичного перерізу. У роботі [4] розглянуто контактну задачу трансверсально-ізотропного півпростору зі штампом за довільної орієнтації поверхні півпростору відносно осі симетрії матеріалу, у роботі [8] – контактну взаємодію при розкритті плоскої тріщини дископодібним включенням у трансверсально-ізотропному просторі, робота [6] містить результати досліджень розподілу напружень у трансверсально-ізотропному півпросторі про лінійно-змінному тиску на ділянках поверхні півпростору, у стаття дано огляд низки задач контактної взаємодії для трансверсально-ізотропних тіл.

Важливим результатом стосовно контактної взаємодії двох пружних ізотропних півпросторів, між якими розташоване плоске дископодібне включення, отримано у роботі Selvadurai [7] (знайдено у явному вигляді розподіл контактного тиску під включенням та значення заглиблень у кожний півпростір). В подальшому, цей результат було узагальнено в роботі Гладвела [10], в якій встановлено загальні закономірності розподілу контактних напружень та переміщень у кожному з півпросторів для плоского включення *довільної форми*.

У даній роботі на основі математичного та комп'ютерного моделювання результат Гладвела [10], стосовно контакту пружних ізотропних півпросторів узагальнено на випадок контактної взаємодії двох пружних трансверсально-ізотропних півпросторів при наявності плоского включенням **довільної форми** між ними. Встановлені загальні закономірності у розподілі контактних напружень та переміщень на границі поділу пружних півпросторів. За допомогою комп'ютерного моделювання досліджено параметри контактної взаємодії дископодібного плоского включення, розміщеного на міжфазній границі двох трансверсально-ізотропних пружних півпросторів.

**Постановка задачи**. Розглянемо математичну модель, на основі якої вивчимо контактну взаємодію двох різних за властивостями трансверсально-ізотропних пружних півпросторів за наявності жорсткого плоского включення сталої товщини між ними (рис. 1)



Рисунок 1 – Контактна взаємодія двох пружних півпросторів за наявності жорсткого плоского включення між ними.

Figure 1– Contact interaction of two elastic half-spaces in the presence of a rigid flat inclusion between them

Припускаємо, що площина z = 0 (рис. 1), яка обмежує два півпростори, є площиною ізотропії трансверсально-ізотропних матеріалів кожного з півпросторів, тобто вісь 0z є віссю симетрії обох

трансверсально-ізотропних матеріалів. Також вважаємо, що у площині контактної взаємодії z = 0виконуються умови гладкого (без тертя) контакту пружних тіл. Розміри області розшарування двох пружних півпросторів (рис. 1) є невідомими і визначаються у процесі розв'язання задачі. Параметри контактної взаємодії пружних тіл залежать від значення стискаючих зусиль *p*, пружних властивостей двох трансверсально-ізотропних півпросторів (всього десять незалежних величин) і геометричних параметрів жорсткого включення.

Для визначення напружено-деформованого стану у кожному з трансверсально-ізотропних пружних півпросторів на поверхні поділу тіл (площині *z* = 0) отримуємо наступні граничні умови:

$$u_{z}^{(1)}(x,y,0) = \Delta_{1}, (x,y) \in \Omega_{1};$$

$$\sigma_{z}^{(1)}(x,y,0) = 0, (x,y) \in \Omega_{2} \setminus \Omega_{1};$$

$$\sigma_{xz}^{(1)}(x,y,0) = \sigma_{yz}^{(1)}(x,y,0) = \sigma_{xz}^{(2)}(x,y,0) = \sigma_{yz}^{(2)}(x,y,0) = 0, (x,y) \in R^{2}; \quad (1)$$

$$u_{z}^{(2)}(x,y,0) = -\Delta_{2}, (x,y) \in \Omega_{1};$$

$$\sigma_{z}^{(2)}(x,y,0) = 0, (x,y) \in \Omega_{2} \setminus \Omega_{1};$$

$$\sigma_{z}^{(1)}(x,y,0) = \sigma_{z}^{(2)}(x,y,0), R^{2} \setminus \Omega_{2}; \quad (2)$$

$$u_{z}^{(1)}(x,y,0) = u_{z}^{(2)}(x,y,0), R^{2} \setminus \Omega_{2}; \qquad (3)$$

де індекси «1» і «2» відповідають першому і другому півпросторам,  $\Delta$  - товщина жорсткого плоского включення,  $\Delta$  і  $\Delta$  - глибини проникнення включення у відповідні півпростори,  $\Omega$ - плоска область, що утворена перетином включення з площиною z=0, а  $\Omega_2$  відповідає зоні розшарування між півпросторами на міжфазній границі z=0 (охоплює область  $\Omega$ ). З наведених граничних умов у площині поділу умови (1) відповідають умовам відсутності дотичних напружень на всій поверхні поділу, умови (2), (3) – умовам ідеального механічного контакту поза зоною розшарування матеріалу. Крім того, маємо наступні умови на нескінченності:

$$\sigma_{zz}^{(l)} \to p_{(при z \to \infty) Ta} \sigma_{zz}^{(2)} \to p_{(при z \to -\infty)}$$

Представимо напружений стан у кожному з пружних півпросторів суперпозицією основного стану (простого стискання  $\sigma_{zz}^{(1)} = -p$  та  $\sigma_{zz}^{(2)} = -p$ ) та збуреного стану. Для знаходження збуреного стану у кожному з півпросторів у площині z = 0 маємо наступні граничні умови:

$$u_{z}^{(1)}(x,y,0) = \Delta_{1}, (x,y) \in \Omega_{1};$$
  

$$\sigma_{z}^{(1)}(x,y,0) = p, (x,y) \in \Omega_{2} \setminus \Omega_{1};$$
  

$$\sigma_{xz}^{(1)}(x,y,0) = \sigma_{yz}^{(2)}(x,y,0) = \sigma_{yz}^{(2)}(x,y,0) = 0, (x,y) \in R^{2}; \quad (4)$$
  

$$u_{z}^{(2)}(x,y,0) = -\Delta_{2}, (x,y) \in \Omega_{1};$$

$$\sigma_{z}^{(2)}(x,y,0) = p, (x,y) \in \Omega_{2} \setminus \Omega_{1};$$
  

$$\sigma_{z}^{(1)}(x,y,0) = \sigma_{z}^{(2)}(x,y,0), R^{2} \setminus \Omega_{2};$$
(5)

$$u_{z}^{(1)}(x, y, 0) = u_{z}^{(2)}(x, y, 0), R^{2} \setminus \Omega_{2};$$

$$\Delta_{1} + \Delta_{2} = \Delta .$$
(6)

Умови (4), (5), (6) мають той же зміст, що й умови (1), (2), (3), але для збуреного стану. Для того, щоб дослідити задачу на основі строгої математичної моделі, яка використовується, необхідно знайти розв'язки рівнянь теорії пружності у кожному з трансверсально-ізотропних півпросторів, що задовольняють наведеним вище граничним умовам на поверхні поділу матеріалів.

**Основні рівняння і співвідношення.** Статичні рівняння теорії пружності для трансверсальноізотропного тіла у переміщеннях приймають вигляд [11]

$$c_{11}\frac{\partial^{2}u_{x}}{\partial x^{2}} + \frac{1}{2}(c_{11} - c_{12})\frac{\partial^{2}u_{x}}{\partial y^{2}} + c_{44}\frac{\partial^{2}u_{x}}{\partial z^{2}} + \frac{\partial}{\partial x}\left[\frac{1}{2}(c_{11} + c_{12})\frac{\partial u_{y}}{\partial y} + (c_{13} + c_{44})\frac{\partial u_{z}}{\partial z}\right] = 0;$$
  

$$\frac{1}{2}(c_{11} - c_{12})\frac{\partial^{2}u_{y}}{\partial x^{2}} + c_{11}\frac{\partial^{2}u_{y}}{\partial y^{2}} + c_{44}\frac{\partial^{2}u_{y}}{\partial z^{2}} + \frac{\partial}{\partial y}\left[\frac{1}{2}(c_{11} + c_{12})\frac{\partial u_{x}}{\partial x} + (c_{13} + c_{44})\frac{\partial u_{z}}{\partial z}\right] = 0;$$
  

$$c_{44}\left(\frac{\partial^{2}u_{z}}{\partial y^{2}} + \frac{\partial^{2}u_{z}}{\partial x^{2}}\right) + c_{33}\frac{\partial^{2}u_{z}}{\partial z^{2}} + (c_{13} + c_{44})\frac{\partial}{\partial z}\left(\frac{\partial u_{x}}{\partial x} + \frac{\partial u_{y}}{\partial y}\right) = 0;$$
(7)

де  $C_{11}$ ,  $C_{12}$ ,  $C_{13}$ ,  $C_{33}$ ,  $C_{44}$ - незалежні пружні сталі трансверсально-ізотропного матеріалу. Розв'язок системи рівнянь (7) згідно [11] можна виразити через три потенціальні функції  $\Phi_i$  (*i* =1,2,3) наступним чином:

$$u_{x} = \partial \Phi_{1} / \partial x + \partial \Phi_{2} / \partial x + \partial \Phi_{3} / \partial y;$$
  

$$u_{y} = \partial \Phi_{1} / \partial y + \partial \Phi_{2} / \partial y - \partial \Phi_{3} / \partial x;$$
  

$$u_{z} = m_{1} \partial \Phi_{1} / \partial z + m_{2} \partial \Phi_{2} / \partial z,$$
(8)

де  $\phi_1, \phi_2, \phi_3$  - функції, що входять до системи (8), задовольняють рівнянням

$$(\partial^2/\partial x^2 + \partial^2/\partial y^2 + v_j \partial^2/\partial z^2)\Phi_j = 0,$$
(9)

а також  $v_3 = 2 c_{44} / (c_{11} - c_{12}); v_1, v_2$  - корені квадратного рівняння

$$c_{11}c_{44}v^2 - \left[c_{44}^2 + c_{33}c_{11} - (c_{13} + c_{44})^2\right]v + c_{33}c_{44} = 0,$$
(10)

$$m_{j} = \frac{c_{11}v_{j} - c_{44}}{c_{13} + c_{44}} = \frac{v_{j}(c_{13} + c_{44})}{c_{33} - v_{j}c_{44}} (j = 1, 2).$$
(11)

При введенні позначень  $z_j = zv_j^{-1/2}$  (j = 1, 2, 3), використовуючи вирази (9)-(11), легко встановити, що функції  $\Phi_1(x, y, z_1), \Phi_2(x, y, z_2), \Phi_3(x, y, z_3)$  будуть гармонічними функціями у відповідній системі координат  $(x, y, z_i)$ .

В подальшому скористаємось позначеннями

$$k_{1} = m_{1} = \frac{c_{11}v_{1} + c_{44}}{c_{13} + c_{44}} - 1; \ k_{2} = m_{2} = \frac{c_{11}v_{2} + c_{44}}{c_{13} + c_{44}} - 1; \ a_{j} = c_{44}(1+m_{j}) \quad (j = 1,2).$$
(12)

**Метод розв'язання.** При побудові розв'язку граничної задачі теорії пружності скористаємося представленням (8), виразами (9)-(12). Функції  $\phi_i(x, y, z_i)$  (для кожного трансверсально-ізотропного півпростору з врахуванням властивостей матеріалу) візьмемо у вигляді

$$\Phi_{i}(x, y, z_{i}) = \alpha_{i}^{*} F^{*}(x, y, z_{i}), (i = 1, 2); \qquad \Phi_{3} \equiv 0.$$
(13)

Сталі  $\alpha_i^*$  у виразах потенціальних функцій (13) визначимо з наступної системи лінійних алгебраїчних рівнянь

$$\sum_{j=1}^{2} \alpha_{j}^{*} \left( c_{44} \left( 1 + k_{j} \right) \right) = 1; \quad \sum_{j=1}^{2} \alpha_{j}^{*} \left( c_{44} \left( 1 + k_{j} \right) \right) / \sqrt{\nu_{j}} = 0.$$
(14)

При визначенні сталих  $Q_i^*$  згідно системи (14) задовольняються граничні умови по дотичним напруженням вздовж всієї поверхні поділу для трансверсально-ізотропного півпростору, а також умови рівності нормальних компонентів напружень поза зоною розшарування матеріалів. Для граничних умов, що залишились, використовуючи потенціальні функції на основі функцій  $F_1^*(x,y,z_i)$ і  $F_2^*(x,y,z_i)$  (функції для першого та другого пружних півпросторів) з врахуванням системи рівнянь (14), отримуємо умови у площині z = 0 стосовно невідомих гармонічних функцій  $F_1^*(x,y,z)$  і  $F_2^*(x,y,z)$ 

$$\sum_{j=1}^{2} \alpha_{i}^{(1)*} \frac{k_{j}^{(1)}}{\sqrt{v_{j}^{(1)}}} \frac{\partial F_{1}^{*}}{\partial z}(x, y, 0) = \Delta_{1}, (x, y) \in \Omega_{1}; \quad \frac{\partial^{2} F_{1}^{*}}{\partial z^{2}}(x, y, 0) = p, (x, y) \in \Omega_{2} \setminus \Omega_{1};$$

$$\sum_{j=1}^{2} \alpha_{i}^{(2)*} \frac{k_{j}^{(2)}}{\sqrt{v_{j}^{(2)}}} \frac{\partial F_{2}^{*}}{\partial z}(x, y, 0) = -\Delta_{2}, (x, y) \in \Omega_{1}; \quad \frac{\partial^{2} F_{2}^{*}}{\partial z^{2}}(x, y, 0) = p, (x, y) \in \Omega_{2} \setminus \Omega_{1};$$

$$\sum_{j=1}^{2} \alpha_{i}^{(1)*} \frac{k_{j}^{(1)}}{\sqrt{v_{j}^{(1)}}} \frac{\partial F_{1}^{*}}{\partial z}(x, y, 0) = \sum_{j=1}^{2} \alpha_{i}^{(2)*} \frac{k_{j}^{(2)}}{\sqrt{v_{j}^{(2)}}} \frac{\partial F_{2}^{*}}{\partial z}(x, y, 0), (x, y) \in R^{2} \setminus \Omega_{2};$$

$$\frac{\partial^{2} F_{1}^{*}}{\partial z^{2}}(x, y, 0) = \frac{\partial^{2} F_{2}^{*}}{\partial z^{2}}(x, y, 0), (x, y) \in R^{2} \setminus \Omega_{2}; \quad (15)$$

Розглянемо для порівняння більш просту задачу теорії пружності про стискання двох пружних ізотропних півпросторів, між якими розташоване жорстке дископодібне включення сталої товщини. За допомогою представлення Папковича - Нейбера визначення зони розшарування стосовно збуреного

стану зводиться до пошуку двох гармонічних функцій  $f_1^*(x,y,z)$  і  $f_2^*(x,y,z)$ , для знаходження яких отримуємо у площині поділу матеріалів z = 0 граничні умови, що структурно повністю подібні наведеним формулам (15). Єдина відмінність полягає у тому, що у цих виразах (для ізотропних

матеріалів) замість множників  $\sum_{j=1}^{2} \alpha_i^{(1)*} k_j^{(1)} / \sqrt{\nu_j^{(1)}}$  і  $\sum_{j=1}^{2} \alpha_i^{(2)*} k_j^{(2)} / \sqrt{\nu_j^{(2)}}$  використовуються вирази

 $(1 - v_1) / \mu_1$  і  $(1 - v_2) / \mu_2$ , де  $v_1, v_2$  - коефіцієнти Пуассон, а  $\mu_1, \mu_2$  - модулі зсуву для ізотропних матеріалів пружних півпросторів. Порівнюючи відповідні вирази контактних напружень і переміщень під плоским жорстким включенням довільної форми для ізотропних і трансверсально-ізотропних півпросторів, виражені через гармонічні функції, встановлюємо, що для плоского включення *довільної форми*, що перебуває у контакті з двома різними за властивостями трансверсальноізотропними півпросторами, згідно результатам [7] мають місце наступні закономірності:

1. переміщення Д та Д пов'язані співвідношенням

$$\Delta_{1} / \left( \sum_{j=1}^{2} \alpha_{i}^{(1)*} k_{j}^{(1)} / \sqrt{\nu_{j}^{(1)}} \right) = \Delta_{2} / \left( \sum_{j=1}^{2} \alpha_{i}^{(2)*} k_{j}^{(2)} / \sqrt{\nu_{j}^{(2)}} \right);$$

2. контактні напруження на кожній стороні включення є тотожними;

3. нормальні переміщення в області, де півпростори контактують (поза зоною розшарування), є не тільки рівними, але й дорівнюють нулю.

Виходячи з такої відповідності граничних задач контактної взаємодії двох ізотропних та двох трансверсально-ізотропних півпросторів перейдемо до випадку плоского дископодібного включення, який дозволяє отримати аналітичний розв'язок задачі. За допомогою результатів [9] для двох пружних ізотропних тіл (за наявності дископодібного включення) та встановленої відповідності задач контактної взаємодії у випадку двох трансверсально-ізотропних півпросторів (за наявності задач контактної взаємодії у випадку двох трансверсально-ізотропних пружних півпросторів (за наявності жорсткого дископодібного включення між ними) задачу зводимо до розв'язку інтегрального рівняння відносно невідомого значення c = b / a (відношення розміру невідомої області розшарування до радіуса жорсткого кругового включення). Отримуємо

$$\varphi(\eta) + \frac{2}{\pi^2} \int_0^1 \frac{\varphi(\xi)}{(\xi^2 - \eta^2)} \left( \eta \ln \left[ \frac{c - \eta}{c + \eta} \right] - \xi \ln \left[ \frac{c - \xi}{c + \xi} \right] \right) d\xi = 
= \frac{\Delta}{ap(1 + \alpha) \sum_{j=1}^2 \alpha_i^{(1)*} \frac{k_j^{(1)}}{\sqrt{v_j^{(1)}}}} + \frac{2}{\pi} (1 - \eta^2) t g^{-1} \left( \frac{c^2 - 1}{1 - \eta^2} \right), \ 0 < \eta < 1$$
(16)

з додатковою умовою, що характеризує відсутність сингулярної складової напружень вздовж зовнішнього контуру зони розшарування матеріалів при r = b

 $\frac{2c}{\pi} \int_{0}^{1} \frac{\varphi(\xi)}{(c^{2} - \xi^{2})} d\xi + (c^{2} - 1)^{1/2} = 0,$  $\operatorname{Ae} \eta = r / a, c = b / a, \alpha = \left( \sum_{j=1}^{2} \alpha_{i}^{(2)*} \frac{k_{j}^{(2)}}{\sqrt{v_{j}^{(2)}}} \right) / \left( \sum_{j=1}^{2} \alpha_{i}^{(1)*} \frac{k_{j}^{(1)}}{\sqrt{v_{j}^{(1)}}} \right).$ 

Далі, на основі розкладу за малим параметром  $\varepsilon = a / b = 1 / c < 1$  шуканої функції, що входить до інтегрального рівняння (16) (аналогічно контакту двох пружних ізотропних півпросторів [9]), наближений розв'язок інтегрального рівняння з додатковою умовою може бути отримано за допомогою розв'язку алгебраїчного рівняння п'ятого порядку

$$\frac{W_1(\varepsilon)}{(1+\alpha)} \left(\frac{\Delta}{a}\right) - 2p \left(\sum_{j=1}^2 \frac{\Delta_j^{(1)}}{\Delta^{(1)}} \frac{k_j^{(1)}}{\sqrt{v_j^{(1)}}}\right) \frac{W_2(\varepsilon)}{\varepsilon} = 0, \qquad (17)$$

Науковий журнал «Автомобільні дороги і дорожнє будівництво» <u>http://addb.ntu.edu.ua</u> ISSN 0365-8171 (Print), ISSN 2707-4080 (Online), ISSN 2707-4099 (CD). AUTOMOBILE ROADS AND ROAD CONSTRUCTION, 2022. Issue 112

де використано позначення

$$W_{1}(\varepsilon) = \frac{4}{\pi}\varepsilon + \frac{16}{\pi^{3}}\varepsilon^{2} + \varepsilon^{3}\left(\frac{64}{\pi^{5}} + \frac{4}{3\pi}\right) + \varepsilon^{4}\left(\frac{80}{9\pi^{3}} + \frac{256}{\pi^{7}}\right) + \varepsilon^{5}\left(\frac{448}{9\pi^{5}} + \frac{1024}{\pi^{9}} + \frac{4}{5\pi}\right) + O(\varepsilon^{6}),$$
  

$$W_{2}(\varepsilon) = 1 - \frac{4}{\pi^{2}}\varepsilon - \frac{16}{\pi^{4}}\varepsilon^{2} - \varepsilon^{3}\left(\frac{64}{\pi^{6}} + \frac{1}{8}\right) - \varepsilon^{4}\left(\frac{16}{3\pi^{4}} + \frac{4}{\pi^{2}}\left(\frac{1}{24} - \frac{8}{9\pi^{2}} + \frac{64}{\pi^{6}} + \frac{4}{9\pi^{3}}\right)\right) - \varepsilon^{5}\left(\frac{16}{\pi^{4}}\left(\frac{1}{24} + \frac{64}{\pi^{6}} - \frac{8}{9\pi^{3}} + \frac{8}{9\pi^{2}}\right) + \frac{256}{9\pi^{6}} - \frac{4}{15\pi^{2}}\right) + O(\varepsilon^{6}).$$
 (18)

Знайдене з алгебраїчного рівняння (17), враховуючи формули (18), значення  $\varepsilon = a / b$  визначає розміри зони розшарування між двома трансверсально-ізотропними пружними півпросторами (за наявності жорского дископодібного включення між ними) при стисканні. Розміри заглиблення включення у відповідний трансверсально-ізотропний півпростір визначаються співвідношенням

$$\frac{1}{\left(\sum_{j=1}^{2} \frac{\Delta_{j}^{(1)}}{\Delta^{(1)}} \frac{k_{j}^{(1)}}{\sqrt{v_{j}^{(1)}}}\right)} \Delta_{1} = \frac{1}{\left(\sum_{j=1}^{2} \frac{\Delta_{j}^{(2)}}{\Delta^{(2)}} \frac{k_{j}^{(2)}}{\sqrt{v_{j}^{(2)}}}\right)} \Delta_{2},$$

З формул (17) отримуємо співвідношення, що пов'язує значення стискаючих навантажень *p* із розміром зони розшарування між півпросторами у вигляді

$$p = \frac{1}{2} \frac{\varepsilon W_{1}(\varepsilon) / W_{2}(\varepsilon)}{\left(\sum_{j=1}^{2} \frac{\Delta_{j}^{(1)}}{\Delta^{(1)}} \frac{k_{j}^{(1)}}{\sqrt{v_{j}^{(1)}}}\right) + \left(\sum_{j=1}^{2} \frac{\Delta_{j}^{(2)}}{\Delta^{(2)}} \frac{k_{j}^{(2)}}{\sqrt{v_{j}^{(2)}}}\right)} \left(\frac{\Delta}{a}\right) = \frac{1}{2} \frac{\varepsilon W_{1}(\varepsilon) / W_{2}(\varepsilon)}{N^{*}} \left(\frac{\Delta}{a}\right),$$
(19)

де

$$N^{*} = \left(\sum_{j=1}^{2} \frac{\Delta_{j}^{(1)}}{\Delta^{(1)}} \frac{k_{j}^{(1)}}{\sqrt{\nu_{j}^{(1)}}}\right) + \left(\sum_{j=1}^{2} \frac{\Delta_{j}^{(2)}}{\Delta^{(2)}} \frac{k_{j}^{(2)}}{\sqrt{\nu_{j}^{(2)}}}\right).$$
 (20)

За допомогою виразів (19), (20) можуть бути знайдені значення навантажень p, що для відомих геометричних параметрів дископодібного включення, пружних властивостей трансверсальноізотропних матеріалів півпросторів відповідає фіксованому розміру зони розшарування трансверсально-ізотропних півпросторів.

Перетворимо вирази, що входять до формул (19), (20), для більш зручного їх використання. Для цього скористаємось формулами (10)-(12). В результаті маємо

$$A^{Trans} = \sum_{j=1}^{2} \frac{\Delta_{j}}{\Delta} \frac{k_{j}}{\sqrt{v_{j}}} = \frac{\frac{a_{2}}{\sqrt{v_{2}}} \frac{m_{1}}{\sqrt{v_{1}}} - \frac{a_{1}}{\sqrt{v_{2}}} \frac{m_{2}}{\sqrt{v_{2}}}{\sqrt{v_{2}}}}{\Delta} = \frac{(-a_{1}m_{2} + a_{2}m_{1})\frac{1}{\sqrt{v_{1}v_{2}}}}{\frac{a_{1}a_{2}}{\sqrt{v_{1}v_{2}}}} = \frac{\frac{-m_{2}}{a_{2}} + \frac{m_{1}}{a_{1}}}{\frac{a_{2}}{\sqrt{v_{1}}} - \sqrt{v_{2}}} = \frac{1}{\frac{a_{1}a_{2}}{\sqrt{v_{1}}} - \frac{a_{1}a_{2}}{\sqrt{v_{1}}}} = \frac{1}{\frac{a_{1}a_{2}}{\sqrt{v_{1}}} - \frac{a_{1}a_{2}}{\sqrt{v_{1}}}} = \frac{1}{\frac{a_{1}a_{2}}{\sqrt{v_{1}}} - \frac{a_{1}a_{2}}{\sqrt{v_{1}}}}} = \frac{1}{\frac{a_{1}a_{2}}{\sqrt{v_{1}}}}} = \frac{1}{\frac{a_{1}a_{2}}{\sqrt{v_{1}}}} = \frac{1}$$

При переході від трансверсально-ізотропного до ізотропного матеріалу отримуємо

$$c_{11} = \lambda + 2\mu; \ c_{13} = \lambda; \ c_{44} = \mu; \ v_1 = v_2 = 1$$
$$A^{Iso} = \sum_{j=1}^{2} \frac{\Delta_j}{\Delta} \frac{k_j}{\sqrt{v_j}} = \frac{\lambda + 2\mu}{2\mu(\lambda + \mu)} = \frac{1 - \nu}{\mu}.$$

Відзначимо, що в результаті подальших перетворень виразу (21) (з використанням теореми Вієта) згідно [5] маємо

$$A^{Trans} = \sum_{j=1}^{2} \frac{\Delta_{j}}{\Delta} \frac{k_{j}}{\sqrt{v_{j}}} = \frac{\sqrt{c_{11}}}{(c_{11}c_{33} - c_{13}^{2})\sqrt{c_{44}}} \left[ \sqrt{c_{11}c_{33} - c_{13}^{2} - 2c_{44}c_{13} + 2c_{44}\sqrt{c_{11}c_{33}}} \right].$$
(22)

Знайдений вираз (22), на відміну від формули (21), дозволяє одразу знаходити шукане значення безпосередньою підстановкою у нього пружних сталих трансверсально-ізотропного матеріалу, не знаходячи попередньо корені квадратного рівняння (9).

Відзначимо, що у кутовій зоні жорсткого плоского включення (вздовж контуру r = a) має місце сингулярність напруженого стану, яка є характерною для задач контактній взаємодії плоских жорстких штампів з пружним півпростором, в той же час вздовж контуру зони розшарування двох півпросторів напруження не містять сингулярної складової (саме з цієї умови і визначаються розміри зони розшарування матеріалів).

Аналіз результатів числових досліджень.



Рисунок 2 – Зв'язок діючих навантажень з розмірами зони розшарування

Figure 2 - Relationship between active loads and the dimensions of the delamination zone

На рис. 2 відображено зв'язок діючих навантажень з розмірами області розшарування (при фіксованому відношенні товщини включення до її радіусу  $\Delta/a$ ). При розрахунках значення  $\Delta/a$  покладались рівними 0,15 (лінія 1), 0,25 (лінія 2), 0,35 (лінія 3). Видно, що при збільшенні відносної товщини кругового включення для досягнення того ж розміру зони розшарування, що і для більш тонкого включення, необхідно прикласти більше навантаження.

Відзначимо, що отримані результати контактної взаємодії дають можливість знайти розв'язок задачі при контакті трансверсально-ізотропного пружного півпростору з ізотропним пружним півпростором (за наявності жорсткого дископодібного включення між ними). Тоді у формулах (20) вираз N<sup>\*</sup> потрібно замінити значенням N<sup>TRANS - ISO</sup>, де

$$N^{TRANS.-ISO} = \left(\sum_{j=1}^{2} \frac{\Delta_{j}^{(1)}}{\Delta^{(1)}} \frac{k_{j}^{(1)}}{\sqrt{v_{j}^{(1)}}} \right) + \frac{(1-v_{2})}{\mu_{2}},$$

<sub>v 2</sub>, µ<sub>2</sub> - коефіцієнт Пуассона та модуль зсуву ізотропного пружного півпростору.

Проведемо дослідження відношень  $\Delta_2 / \Delta_1$  (відношення глибин проникнення жорсткого включення у пружні півпростори) для реальних трансверсально-ізотропних матеріалів. Використаємо

дані [8] стосовно пружних властивостей різних матеріалів. Номери, за якими трансверсально-ізотропні матеріали подані у таблиці, будемо використовувати для позначень параметрів контакту півпросторів з цих матеріалів.

| Site i Elustic properties of transversarily isotropic materials |              |          |          |          |          |          |
|-----------------------------------------------------------------|--------------|----------|----------|----------|----------|----------|
| Т                                                               | Матеріал     | с11, ГПа | с33, ГПа | с44, ГПа | c12, ГПа | c13, ГПа |
| 1                                                               | Be           | 292.3    | 336.4    | 162.5    | 26.7     | 14.0     |
| 2                                                               | C (graphite) | 1160.0   | 46.6     | 2.3      | 290.0    | 109.0    |
| 3                                                               | Cd           | 115.8    | 51.4     | 20.4     | 39.8     | 40.6     |
| 4                                                               | Co           | 307.0.   | 358.1    | 78.3     | 165.0    | 103.0    |
| 5                                                               | Hf           | 181.1    | 196.9    | 55.7     | 77.2     | 66.1     |

Таблиця 1 – Пружні властивості трансверсально-ізотропних матеріалів Table 1 – Elastic properties of transversally isotropic materials

В результаті проведених досліджень отримуємо наступні відношення глибин проникнення жорсткого дископодібного включення у трансверсально-ізотропні матеріали:

$$\Delta_{2} / \Delta_{1} = 18.218$$
;  $\Delta_{3} / \Delta_{1} = 6.974$ ;  $\Delta_{4} / \Delta_{1} = 1.213$ ;  $\Delta_{5} / \Delta_{1} = 2.022$ 

Тобто глибина проникнення жорсткого включення у матеріал 1 у 18.2 менша, ніж у матеріал 2 (при контакті півпросторів з цих матеріалів), а також у 6.97 менша, ніж у матеріал 3 (при контакті півпросторів з матеріалів 1 і 3) і т.д. Наведені значення дозволяють легко знайти відносні глибини проникнення для будь-якої вибраної пари з наведених у таблиці матеріалів.

Висновок. У роботі проведено математичне та комп'ютерне моделювання контактної взаємодії двох трансверсально-ізотропних пружних півпросторів при стисканні (за наявності жорсткого плоского включення між ними), узагальнено результат Гладвелла на випадок трансверсальноізотропних півпросторів з плоским включенням довільної форми між ними. Для дископодібного включення проведено числові розрахунки, досліджено вплив властивостей матеріалів, відносної товщини жорсткого включення та силових навантажень на розміри зони розшарування.

## Перелік посилань

1. <u>Borodich F.M.</u> The JKR-type adhesive contact problems for transversely isotropic elastic solids / <u>Borodich F.M.</u>, <u>Galanov B.A.</u>, <u>Keer L.M.</u>, <u>Suarez-Alvarez M.M.</u> // *Mechanics of Materials*. 2014. 75, P. 34-44.

2. <u>Chai Y.S.</u> <u>Local tangential contact of elastically similar, transversely isotropic elastic bodies</u> / <u>Chai Y.S.</u>, <u>Argatov I.I.</u> // *Meccanica*. 2018. 53, № 11-12. P. 3137-3143.

3. Davtyan D.B. Action of an elliptic punch on a transversally isotropic half-space/ Davtyan D.B., Pozharskii D.A. // Mechanics of Solids. 2014. 49, № 5. P. 578-586.

4. Fabrikant V.I. <u>Contact problem for an arbitrarily oriented transversely isotropic half-space</u> / Fabrikant V.I. // *Acta Mechanica*. 2017. 228, № 4. P. 1541-1560.

5. Kirilyuk V.S. <u>Stress state of a piezoceramic body with a plane crack opened by a rigid inclusion</u> / Kirilyuk V.S. // *Int. Appl. Mech.* 2008. 44, № 7. P. 757–768.

6. Marmo F. <u>Analytical formulas and design charts for transversely isotropic half-spaces subject to</u> <u>linearly distributed pressures</u> / Marmo F., Toraldo F., Rosati L. // *Meccanica*. 2016. 51, № 11. P. 2909-2928.

7. Podil'chuk Yu.N. Exact analytic solutions of three-dimensional boundary-value problems of the statics of a transversely isotropic body of canonical form (Survey) / Podil'chuk Yu.N. // *International Applied Mechanics.* - 1997. - **33**, №10. P. 763–787.

8. Freund L.B. Thin Film Materials / Freund L. B., Suresh S.- Cambridge: <u>Cambridge University Press</u>, 2003.- 802 p.

9. Selvadurai A.P.S. A unilateral contact problem for a rigid disc inclusion embedded between two dissimilar elastic half-spaces / Selvadurai A.P.S. // Q. J. Mech. Appl. Math. 1994. № 3. P. 493-509.

10. Gladwell G.M.L. On contact problems for a medium with rigid flat inclusions of arbitrary shape / Gladwell G.M.L. // International Journal of Solids and Structures. 1995. 32, № 3-4. P.383 –389.

11. Elliott H.A. Three-dimensional stress distributions in hexagonal aeolotropic crystals / Elliott H.A., Mott N.F. // Mathematical Proceedings of the Cambridge Philosophical Society. 1948. 44, № 4. P.522–533.

#### MATHEMATICAL AND COMPUTER MODELING OF THE CONTACT INTERACTION OF TRANSVERSALLY ISOTROPIC ELASTIC HALF-SPACES IN THE PRESENCE OF A RIGID FLAT INCLUSION BETWEEN THEM

**Kirilyuk Vitaly S.**, doctor of physical and mathematical sciences, leading researcher, senior researcher, S.P. Timoshenko Institute of mechanics of NAS of Ukraine, 3 Nesterova str, mathematical modeling of processes in mechanics, phone +380995252031, <u>kirilyuk v@ukr.net</u>, <u>https://orcid.org/0000-0002-8513-0378</u>

Levchuk Olga I., Ph.D., senior researcher, senior researcher, S.P. Timoshenko Institute of mechanics of NAS of Ukraine, 3 Nesterova str, mathematical modeling of processes in mechanics, phone +38044596 7715, 2013levchuk@gmail.com, https://orcid.org/0000-0002-6514-6225

**Gavrilenko Valeriy V.,** doctor of physical and mathematical sciences, professor, head of department of information systems and technologies, faculty of transport and information technologies of National Transport University, Kyiv 01010, Omelyanovich-Pavlenko str. 1, mathematical modeling of processes in mechanics, phone +380503806406, v\_gavr@ukr.net, https://orcid.org/0000-0001-9682-4204

**Viter Mykhailo B.,** Ph.D., associated professor, professor of department of information systems and technologies, faculty of transport and information technologies of National Transport University, mathematical modeling of processes in mechanics, phone +380669413905, <u>mbviter@gmail.com</u>, <u>https://orcid.org/0000-0003-4109-005X</u>

Abstract. Mathematical and computer modeling of the contact interaction of two transversely isotropic elastic half-spaces with different properties in the presence of a rigid flat inclusion between them under compression is carried out. Based on the representation of the general solution of the system of equilibrium equations for a transversally isotropic body in terms of harmonic functions, a correspondence is established between the contact interaction parameters for two transversely isotropic and two elastic isotropic half-spaces (in the presence of a rigid planar inclusion of an arbitrary shape between them), which generalizes Gladwell's result to the case interactions of transversely isotropic half-spaces. By means of the mathematical and computer modeling, the contact interaction of transversely isotropic half-spaces with a disk-like inclusion is studied. The analysis of the numerical results is carried out, the influence of the elastic properties of the half-space, the geometric dimensions of the inclusion on the parameters of the contact interaction is studied.

**Key words:** mathematical and computer modeling, transversely isotropic material, elastic half-space, rigid planar inclusion, arbitrary shape, contact parameters

## References

1. <u>Borodich F.M.</u> [et.al.]. (2014). <u>The JKR-type adhesive contact problems for transversely isotropic elastic solids</u> // Mechanics of Materials. 75. 34-44.

2. <u>Chai Y.S.</u> [et.al.]. (2018). <u>Local tangential contact of elastically similar, transversely isotropic elastic bodies</u> // Meccanica. – 53, 11-12. 3137-3143.

3. <u>Davtyan D.B.</u> [et.al.]. (2014).<u>Action of an elliptic punch on a transversally isotropic half-space</u>/ // Mechanics of Solids. 49. 5. 578-586.

4. Fabrikant V.I. (2017) <u>Contact problem for an arbitrarily oriented transversely isotropic half-space</u> // Acta Mechanca. 228. 4. 1541-1560.

5. Kirilyuk V.S. (2008) <u>Stress state of a piezoceramic body with a plane crack opened by a rigid inclusion</u> / // Int. Appl. Mech. 44. 7. 757–768.

6. Marmo F. [et.al.]. (2016). <u>Analytical formulas and design charts for transversely isotropic half-spaces</u> <u>subject to linearly distributed pressures</u> // Meccanica. 51. 11. P. 2909-2928.

7. Podil'chuk Yu.N. (1997) Exact analytic solutions of three-dimensional boundary-value problems of the statics of a transversely isotropic body of canonical form (Survey) // International Applied Mechanics. 33. 10. 763–787.

8. Freund L.B. (2003) Thin Film Materials. Cambridge: Cambridge University Press. 802.

9. Selvadurai A.P.S. (1994) A unilateral contact problem for a rigid disc inclusion embedded between two dissimilar elastic half-spaces // Q. J. Mech. Appl. Math. 3. 493-509.

10. Gladwell G.M.L. (1995) On contact problems for a medium with rigid flat inclusions of arbitrary shape / Gladwell G.M.L. // International Journal of Solids and Structures. 32. 3-4. 383 –389.

11. Elliott H.A. [et.al.]. (1948). Three-dimensional stress distributions in hexagonal aeolotropic crystals // Mathematical Proceedings of the Cambridge Philosophical Society. 44. 4. 522–533.