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Statement of the problem.

Autovibration of dynamical systems is one of the most widespread self-organization phenomena in
nature. It can play both the positive and negative roles in many devices, beginning, for example, from bow
and wind musical instruments and to complex objects of modern industry and electronic technical
equipment. The simplest and clearest model, illustrating the process of mechanical autovibration generating,
is the 1 DOF oscillator including a conveyor belt with a load on it, restrained by elastic weightless spring [1].
Between the belt and load, the conditions of nonlinear frictional interaction are realized, which at certain
constant values of the belt velocity v cause self-excitation of periodic reciprocating motions of the weight.
Owing to its simplicity, this system was exhaustively investigated for different laws of nonlinear friction and
elastic extension-compression of the spring. With its use, some general regularities of the autovibrational
process self-excitation and proceeding were established.

But the considered model undergoes qualitative alterations if the spring is long. Then, its mass may be
comparable or even larger the body mass, it ceases to be a simple elastic element, and becomes an elastic
waveguide transmitting longitudinal extension-compression waves. Such device should be simulated by
distributed systems with vibrations possessing modes arranged in an ordered (wave) fashion. In practice,
such phenomena may appear, for example, in towing a transport facility on a water or solid surface.

Analysis of Publications. Similar processes also occur in the devices of deep drilling [2,3]. At the drill
string extraction from the bore-hole cavity, the drill bit grates with its surface and the string begins to play
the role of a waveguide. However, apparently the most distinctive autovibrational wave processes are
generated in drilling the deep vertical bore-holes [4-9]. When, as a result of non-linear frictional interaction
between the rotating bit and the near bottom surface of the well, the bit begins to commit torsional vibrations
and torsional waves begin to propagate along the drill string. Analysis of these vibrations was performed on
the basis of the non-linear model of torsional wave pendulum in [10]. It was shown in this reference that the
self-oscillations were realized inside some diapason of change of the system rotation velocity and transitions
from stationary rotations to periodic rotational motions were accomplished in the forms of the Hopf
bifurcations [1].

The basic attention is paid to the systems with small inertance where the vibrating body mass is much
less the waveguide inertance. In this connection, the constructed differential equation has the small
parameter before the senior (second) derivative. The equations of this type are called singularly perturbed
[11,12]. Their solutions have the shapes of saw-tooth functions and the vibrations described by them are
called relaxational [13]. The second feature of the constructed solutions consists in the fact that the velocity
function of the vibrating body has the quantized character in time with the quantum duration equaled the
duration of the waveguide double length running by the wave [14].

Constitutive equation.

For the purpose of theoretical simulating the phenomenon of self-excitation of a waveguide vibration,
the wave model of a dragging device with elastic cable of length L is used. It should be remarked that this
model can be easily extended to other mechanic or electronic waveguide systems. In the considered case the
right-hand end of the cable is considered to move with constant velocity v along the immovable OX axis.
The longitudinal vibrations of the dragged body are excited through its frictional interaction with the
horizontal surface.
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To describe the body motion, introduce also the O,x axis moving with speed v. Then, the distance
travelled by the body along the Ox axis is vt + u(O,t), where v? is the distance covered by the O, point; ¢

is the time; u = u(x, t) is the elastic displacement of the cable element along the O,x axis.

By treating the elastic cable as an elastic waveguide, its axial vibrations can be described by the wave
equation

0’u o*u

where A is the cross-section area of the cable, o is its material density, and E is its elasticity modulus.
Eq. (1) can be brought to the standard form:

o _a’ =0 )

Here a =/ E/ p is the velocity of the longitudinal wave.
The solution to Egs. (1), (2) is

ulx,t)= fx—at)+ glx+at) (3)

expressed through the phase variables x —at and x+at. In Eq. (3), f (x - at) is the longitudinal elastic
wave emanated towards right end x =L from the body, g(x+ at) is the wave propagating to the body

from the right end x = L of the cable.
Since the end x = L is moving with constant velocity v, it can be considered as clamped one for the
elastic displacement. Then,

u(L,t)=0 or f(L—at)+g(L+at):0 “4)

To deduce the boundary condition at the left end x =0, consider the dynamic equilibrium of the
forces applied to it. So, one has

F"+F" +F9=0, (5)

where F™ =—mii is the inertia force acting on the body, F/ = F” (V+L2) is the friction force formed

between the body and horizontal surface, it will be defined later. Here, the dot over a symbol denotes
derivative with respect to time.

The elastic force F¢ is calculated with the help of equality

F =EAou/ox|_ (6)

where the strain Ou / Ox value is calculated as follows

ou =i[f(x—at)+ gle+at)l, @
ox|,_, Ox

Since the independent variables u and ¢ are connected by the phase variables x —«af and x +at,

the partial derivative Ou /Ox can be expressed via the Ou /0Ot derivative. Really, it issues from Egs. (3) and
“4)
g(L+at)=—f(L-at) (8)
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However,

g(x+at):g{L+a t—L_xﬂ. )

(24

From (8) and (9), it follows g{L + a(r _L- xﬂ =—flL- a(t _L- xﬂ

So
glx+at)=—fQRL-x—-at) (10)
Introduce the notations x —af = p, 2L —x —at = q . Then, instead of (3), the presentation is gained

ulx,t)= flx—at)- fQL-x-at)= f(p)- f(q). (11)

With its use, the derivatives can be calculated

ou _of[plet)]_ oflateo)] _or(p)ap _ofla)oq _of(p)  olq)

Ox Ox Ox op Ox 0Oq Ox  Op 0q (12)
ou _oflptet)l_oflaleo)l_ar(p)op _ofl@)oq __ of(p), ,o(a)
ot ot ot dp Ot Oq ot op oq
Through correlation these equalities, one can represent
ou__19(p), 1) (13

Ox a o a ot
and express the F “ force in terms of the derivatives with respect to f:

o _EA 0 N, O
= { % pean 2 at+2L)}

(24

After performing these substitutions and transformations, Eq. (5) will look like to the following non-
linear relationship

m[f (- at)- f(—at+2L)]+%A[f(—at)— F(ear+2L)- Fr(v+i)=0. (14)

Here, f = £(0,¢), u =u(0,¢). Types of the F" function will be discussed later.

Solutions of the constructed equation display a series of features stemming from the type of the
F7” (v + u) non-linear function. In the first place, it has a stationary solution for every value of v. Indeed, if
=0 and i =0, then Eq. (2) is reduced to the form

with stationary solution du/dx =c,, u=c, +c¢x.

104



The constants ¢, and ¢, are found from boundary conditions (4) and (5)

u(L)=0, EA% __pr(y)
dx

or
c,+¢L=0, ¢ =—F"(v)/EA.
Thus,
u(x)=(L-x)-F"(v)/ EA (15)

Secondly, a diapason v, <v<v, exists, where stable periodic solutions occur in addition to
stationary ones (15), which become unstable. Outside this diapason, stationary solutions (15) in the form of
balanced motion v =const, u(0)=L-F"(v)/EA are stable. The states v=v,, v=v,, where the
stationary motion is changed by autovibration and vice versa, are called the bifurcations of limit cycle birth

and limit cycle loss or the Hopf (Poincare-Andronov-Hopf) bifurcations [1].
In parallel with these two traits, the third one exists for small inertance (mass m ) of the body in

comparison with large inertance (or acoustic stiffness pA4-a = A,/ Ep ) of the waveguide and values of

F” (v) So, as indicated in [13], the problem of integration the equation with small coefficient before the
senior derivative is singularly perturbed, the autovibrations are of relaxation type, and have nearly
discontinuous velocities.

Beginning from the classic works by A. Poincare and A.M. Liapunov, the so called regular type of
equations

i=F(t,x,x,e) (0<r<1) (16)

was analyzed in details. Here, it is assumed that right-hand term regularly depends on the parameter ¢ in the
vicinity of & =0 and the solutions are studied inside the segment 0 < ¢ < 1. However the equation solutions
become less regular and more diversified when the small parameter 0 < & <<1 occurs before the second
derivative

ei=F(t,x,x) (0<r<1) (17)

In this case, the influence of the left-hand member on the solution becomes significant only for large
values of X, related to the states of fast change in the system motion. So, the distinguishing property of these
type equations is that they have periodic solutions in the shape of nearly broken straight lines or saw tooth
curves.

Ultimately, one more feature of Eq. (14) is that it includes the delay argument — a(t —-2L/ a). By

virtue of this, the system remembers the perturbations imposed previously on it with the 2L/« delay and is
self-adjusted to quantized vibrations with time quantum Az =2L/a [14]. So, it is of interest to follow the
evolution of the autovibration modes with the change in parameter v.

Yet, the principal cause of the irregular dynamics agitation is non-linear frictional interaction between
the movable body and foundation surface which is responsible for the antidumping and excitation of
relaxation oscillations. Thus, mechanism of this kind interaction should be considered especially.

Discussion of results.
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In mechanics, the waveguiding autovibrational systems are rarely met. The sole example of the singularly
perturbed problem in this field, which plays a large role in practical applications, is the problem about the
torsional auto-oscillations of long drill strings at their rotation with angular velocity @ . Such vibrations are
generated as a consequence of nonlinear frictional interaction of their bits with the bore-hole bottom surfaces
at the rock cutting. Because of the fact that the bit (vibrating body) mass is much less than the drill string
0\ ¢ (rad) (waveguide) mass, the system has small inertance,
the coefficient before the inertia member (the
second derivative) of the corresponding vibration
equation is very small and its solution has the shape
of a broken line. In connection with the
discontinuous  character of the relaxation
vibrations, they are dangerous for the strength of
the bit and drill string. Yet, the structure of the
. equation, describing these phenomena, is
complicated, there are no universal methods for
their investigation, and because of this, they are
-200 T poorly understood.
WD Firstly, consider the homogeneous drill

-100

string 8000 m in length. The characteristic
parameters used for its analysis are selected as

t(s) follows: G=8.077-10" Pa,
0 4|00 8|00 1,|200 p=7.8-10" kg/m’. External and internal radii

of the tube cross-section are 7 =0.0841m and

r,=0.0741m, then I, =3.12-10" m".
Figure 1 — The mode of the bit auto- One of the main features, influencing on the
oscillation (L =8000 m , @, =0.71 rad/s) process of the bit torsion vibration, is the law of the
friction moment M’ dependence on the total
velocity @+ @ of its rotation. The shape of function M # (a) + gp) is determined by many factors, what is
more, the values of their parameters vary during the drilling process.

In this reason, it is conceivable that no universal functions of this kind can be chosen for analysis of
the system dynamics. The most commonly encounted relationships between M7 and @+ ¢ are represented
by the Coulomb friction law shown in. It is used in our investigation for analysis of general regularities of
autovibration proceeding. In its diagram, the vertical segment determines the static friction moment M, it

is realized in the absence of sliding between bodies. After achieving some limit value M, ., the static

lim >
friction moment M, is replaced by the dynamic friction moment M, , which is accompanied by sliding

between rubbing surfaces. then, the friction moment M7 can be represented with the aid of the following
approximate function [10]

g | akor o) ek @+ o) +adi(@+)f +ak (0+g) +ak (@+9) |
i 1+a,k*(w+)

where the coefficients q, (i = 1,2,...,9) are found by the trial-and-error method. For the considered cases
they have the following values: @, =2400 N -m-s, a, =225s>, a,=15000 N -m-s>, a;=1N-m-s,
a7:4N-m~s7, a9=—130N-m~s9, k=0.025, m =1000, M, =-41250 N -m,
M7 =-825-10" N-m.

The analysis of the bit dynamics was performed by integrating the appropriate equation by the Runge-
Kutta method with the initial conditions (/)(0) =0, qo(O) =0 for different values of @ . The integration step

was selected tobe At =7.769-107 s.
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The calculation results permit us to

formulate some regularities. On the one hand, in 8 ¢ (rad/s)

the process of functioning, the drill string can be g

either in the states of stationary rotation or of []
torsional self-induced  elastic oscillation, 6

depending on the chosen regime of drilling. As this 4

takes place, the value @, of the angular velocity 4

@ corresponding to the bifurcation state of the
limit cycle  Dbirth  equals the  value
®w=0.71rad /s, which conforms to the 5 _]

minimum point of the M’ (aH— (p) diagram. The

regimes of motion with @ < @, are characterized

O —]
by the stationary rotation without any oscillation AT—1 1 b
when the system changes from its initial state T AT— A7
9(0)=0, @0)=0 to some quasi-static _o tl(s)l

T I T I T I T I T I T I
equilibrious state go(t)zgt, (b(t)zO and self- 380 400 420 440 460 480 500 520
induced vibrations do not take place. But during Figure 2 — The diagram of the angular
the system transition from outside to inside this velocity change (L = 8000 m
diapason through the value @=®,, the Hopf ’
b @, =0.71 rad/s)

bifurcation occurs and limit cycles appear together
with  the  unstable  stationary  solutions

o(t)= const , ¢(t)=0.
The mode of the bit angular vibration in the result of bifurcation of the limit cycle birth
(w, =0.71rad /s) is shown in Fig. 1. It is realized with comparatively large period 7' ~115 s and swing

D =~35rad . But the more interesting feature of this process is that the auto-oscillations are of the
relaxational (nearly discontinuous) type and include time segments of fast and slow motions inside every
period.

The diagram of angular velocity (/)(t) in the time diapason 380 <¢ <520 s is presented in Fig. 2. It
illustrates a principally new, subtler peculiarity, which is unique only to waveguiding systems [14]. This
feature consists in the fact that the self-excited oscillations proceed in the manner of quantized time and the
time quantum duration A7 is equal to the time segment of the wave passing the path from the bit to the top
end of the DS and backward, i.e. Az=2L/ .

Together with the phenomena of self-excitation of stationary auto-oscillations, the problem about
transient processes under conditions of the moving body speeding up or braking represents certain interest. It
can be imagined that if a DS begins to rotate with small constant angular acceleration &, then it will

gradually pass through the bifurcation velocity @,, enter into the diapason of auto-oscillations and

afterwards again go out through the point @, of limit cycle loss to the domain of pure rotation without

oscillations. But the situation changes when acceleration & is not small. Then, owing to existence of the
system inertance, all the observed effects can take place, though with some delay for homogeneous DS 1000

m in length and angular acceleration & = 0.05 rad /s ). The found effect becomes more visible with further

& enlargement and for the values &€ > 0.5 rad / s” the auto-oscillation phenomena do not occur at all.

Conclusions.

The analysis of the limit cycle birth bifurcations in the models of homogeneous and sectional
waveguiding systems is presented in this paper. The constitutive differential equations with delay argument
are constructed, which are shown to be singularly perturbed. Based on analysis of an applied example
associated with self-excitation of deep drill string torsion oscillation, one can draw the following
conclusions:
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1. The auto-oscillations of homogeneous and sectional DSs prevail at low values of the their angular
velocity @, the boundaries of the @ segments of their self-excitation do not depend on the number of the
DS sections and are determined by the outline of the friction moment function.

2. The autovibrations are of the relaxation type and contain fast and slow motions.

3. The self-excited oscillations proceed in the manner of quantized time. The time quantum durations
equal the time of the torsional wave propagating through the doubled length of the DS.

4. The velocity - time quanta in sectional drill strings have additional fragmentations caused by the
multiple diffractions of the torsional waves at the points of the section joints.
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PE®EPAT

I'mymakosa O.B. PenakcauifiHi aBTOKOJIMBAaHHS KpPYTiHHS TJIHOOKUX OYpHJIBHHUX KOJOH. /
O.B. I'mymrakoBa // BicaHmk HarionamsHOTO TpaHcmopTHOTO YyHiBepcuteTy. Cepis «TexHiUuHI HayKm».
HayxoBo-texuiunnii 36ipauk. — K. : HTY, 2015. — Bun. 1 (31).

PosrasinyTa npobiema npo camo30yIKeHHsT KPYTHIBHUX KOJIMBaHb OypHIJIBHUX KOJIOH B pe3yJlbTarTi
(hpUKIIiITHOT B3aeMO/IiT JOIOTA 3 PYyHHIBHOIO TIOPOJIOH0.

O06'exT mocnimkeHHs — edekTu OiQypkauiiHOTO Mepexoay BiJ cTalioHapHOTO 00epTaHHs OypHIBHOT
KOJIOHM JI0 aBTOKOJIMBAaHb KPYTiHHS 1 Ha3a.

Merta pobotu — mochianTi OipypkauiiiHi ctann OypUIBHUX KOJIOH, II0 00epTaroThes, 1 TOOyAyBaTu
MOJIY aBTOKOJIMBAHb.

Meton IOCHIIKEHHS — METOJ YHCEIbHOTO iHTETpyBaHHS PIBHSAHb KPYTIHHSA B Iepea- 1 IOCT-
KPUTHYHUX CTaHaX.

KJIIOUYOBI CJIOBA: XBWJIEBOJHI CUCTEMH, CHHI'VJIAIPHO 3BYPEHI 3AJIAYI,
CAMO3BYKEHHSI KOJIMBAHbD, BI®YPKALIIS XOI®A, PEJIAKCALIIMHI KOJTMBAHHSI.

ABSTRACT

Glushakova O.V. Relaxational torsional autovibrations of deep drill strings. Visnyk National
Transport University. Series «Technical sciences». Scientific and Technical Collection. — Kyiv: National
Transport University, 2015. — Issue 1 (31).

In this paper the analysis of the limit cycle birth bifurcations in the models of homogeneous and
sectional waveguiding systems is presented. The constitutive differential equations with delay argument are
constructed, which are shown to be singularly perturbed. Based on analysis of an applied example associated
with self-excitation of deep drill string torsion oscillation, one can draw the following conclusions:

The auto-oscillations of homogeneous and sectional DSs prevail at low values of the their angular
velocity @, the boundaries of the @ segments of their self-excitation do not depend on the number of the
DS sections and are determined by the outline of the friction moment function.

The autovibrations are of the relaxation type and contain fast and slow motions.

KEYWORDS: WAVEGUIDING SYSTEMS, SINGULARLY PERTURBED PROBLEM, SELF-
INDUCED VIBRATIONS, HOPF’S BIFURCATION, RELAXATION VIBRATIONS.
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