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Statement of the problem. 
Autovibration of dynamical systems is one of the most widespread self-organization phenomena in 

nature. It can play both the positive and negative roles in many devices, beginning, for example, from bow 
and wind musical instruments and to complex objects of modern industry and electronic technical 
equipment. The simplest and clearest model, illustrating the process of mechanical autovibration generating, 
is the 1 DOF oscillator including a conveyor belt with a load on it, restrained by elastic weightless spring [1]. 
Between the belt and load, the conditions of nonlinear frictional interaction are realized, which at certain 
constant values of the belt velocity v  cause self-excitation of periodic reciprocating motions of the weight. 
Owing to its simplicity, this system was exhaustively investigated for different laws of nonlinear friction and 
elastic extension-compression of the spring. With its use, some general regularities of the autovibrational 
process self-excitation and proceeding were established. 

But the considered model undergoes qualitative alterations if the spring is long. Then, its mass may be 
comparable or even larger the body mass, it ceases to be a simple elastic element, and becomes an elastic 
waveguide transmitting longitudinal extension-compression waves. Such device should be simulated by 
distributed systems with vibrations possessing modes arranged in an ordered (wave) fashion. In practice, 
such phenomena may appear, for example, in towing a transport facility on a water or solid surface.  

Analysis of Publications. Similar processes also occur in the devices of deep drilling [2,3]. At the drill 
string extraction from the bore-hole cavity, the drill bit grates with its surface and the string begins to play 
the role of a waveguide. However, apparently the most distinctive autovibrational wave processes are 
generated in drilling the deep vertical bore-holes [4-9]. When, as a result of non-linear frictional interaction 
between the rotating bit and the near bottom surface of the well, the bit begins to commit torsional vibrations 
and torsional waves begin to propagate along the drill string. Analysis of these vibrations was performed on 
the basis of the non-linear model of torsional wave pendulum in [10]. It was shown in this reference that the 
self-oscillations were realized inside some diapason of change of the system rotation velocity and transitions 
from stationary rotations to periodic rotational motions were accomplished in the forms of the Hopf 
bifurcations [1]. 

The basic attention is paid to the systems with small inertance where the vibrating body mass is much 
less the waveguide inertance. In this connection, the constructed differential equation has the small 
parameter before the senior (second) derivative. The equations of this type are called singularly perturbed 
[11,12]. Their solutions have the shapes of saw-tooth functions and the vibrations described by them are 
called relaxational [13]. The second feature of the constructed solutions consists in the fact that the velocity 
function of the vibrating body has the quantized character in time with the quantum duration equaled the 
duration of the waveguide double length running by the wave [14]. 

Constitutive equation. 
For the purpose of theoretical simulating the phenomenon of self-excitation of a waveguide vibration, 

the wave model of a dragging device with elastic cable of length L   is used. It should be remarked that this 
model can be easily extended to other mechanic or electronic waveguide systems. In the considered case the 
right-hand end of the cable is considered to move with constant velocity v  along the immovable OX  axis. 
The longitudinal vibrations of the dragged body are excited through its frictional interaction with the 
horizontal surface. 
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To describe the body motion, introduce also the xO1  axis moving with speed v . Then, the distance 
travelled by the body along the Ox  axis is ( )tutv ,0+ , where tv  is the distance covered by the 1O  point; t  
is the time; ( )txuu ,=  is the elastic displacement of the cable element along the xO1  axis. 

By treating the elastic cable as an elastic waveguide, its axial vibrations can be described by the wave 
equation 
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where A  is the cross-section area of the cable, ρ  is its material density, and E  is its elasticity modulus. 

Eq. (1) can be brought to the standard form: 
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Here ρα /E=  is the velocity of the longitudinal wave. 
The solution to Eqs. (1), (2) is  
 

( ) ( ) ( )txgtxftxu αα ++−=,                                                     (3) 
 

expressed through the phase variables tx α−  and tx α+ . In Eq. (3), ( )txf α−  is the longitudinal elastic 
wave emanated towards right end Lx =  from the body, ( )txg α+  is the wave propagating to the body 
from the right end Lx =  of the cable. 

Since the end Lx =  is moving with constant velocity v , it can be considered as clamped one for the 
elastic displacement. Then,  

 
( ) 0, =tLu   or  ( ) ( ) 0=++− tLgtLf αα                                     (4) 

 
To deduce the boundary condition at the left end 0=x , consider the dynamic equilibrium of the 

forces applied to it. So, one has 
 

0=++ elfrin FFF ,                                                   (5) 
 

where umF in &&−=  is the inertia force acting on the body, ( )uvFF frfr &+=  is the friction force formed 
between the body and horizontal surface, it will be defined later. Here, the dot over a symbol denotes 
derivative with respect to time.  

The elastic force elF  is calculated with the help of equality  
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where the strain xu ∂∂ /  value is calculated as follows 
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Since the independent variables u  and t  are connected by the phase variables tx α−  and tx α+ , 

the partial derivative xu ∂∂ /  can be expressed via the tu ∂∂ /  derivative. Really, it issues from Eqs. (3) and 
(4) 

( ) ( ).tLftLg αα −−=+        (8) 
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However,  
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So 
 

( ) ( ).2 txLftxg αα −−−=+      (10) 
 
Introduce the notations ptx =−α , qtxL =−− α2 . Then, instead of (3), the presentation is gained 
 

( ) ( ) ( ) ( ) ( )qfpftxLftxftxu −=−−−−= αα 2, .    (11) 
 
With its use, the derivatives can be calculated 
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Through correlation these equalities, one can represent 
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and express the elF  force in terms of the derivatives with respect to t : 
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After performing these substitutions and transformations, Eq. (5) will look like to the following non-

linear relationship 
 

( ) ( )[ ] ( ) ( )[ ] ( ) .022 =+−+−−−++−−− uvFLtftfEALtftfm fr &&&&&&& αα
α

αα   (14) 

 
Here, ( ) ( )tuutff ,0,,0 == . Types of the frF  function will be discussed later. 
Solutions of the constructed equation display a series of features stemming from the type of the 

( )uvF fr &+  non-linear function. In the first place, it has a stationary solution for every value of v . Indeed, if 
0=u&  and 0=u&& , then Eq. (2) is reduced to the form 
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with stationary solution 1/ cdxdu = , xccu 12 += . 
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The constants 1c  and 2c  are found from boundary conditions (4) and (5) 
 

( ) 0=Lu ,    ( )vF
dx
duEA fr−=  

 
or 
 

012 =+ Lcc ,   ( ) EAvFc fr /1 −= . 
 

Thus, 
 

( ) ( ) ( ) EAvFxLxu fr /⋅−=       (15) 
 
Secondly, a diapason lb vvv ≤≤  exists, where stable periodic solutions occur in addition to 

stationary ones (15), which become unstable. Outside this diapason, stationary solutions (15) in the form of 
balanced motion constv = , ( ) ( ) EAvFLu fr /0 ⋅=  are stable. The states bvv = , lvv = , where the 
stationary motion is changed by autovibration and vice versa, are called the bifurcations of limit cycle birth 
and limit cycle loss or the Hopf (Poincare-Andronov-Hopf) bifurcations [1]. 

In parallel with these two traits, the third one exists for small inertance (mass m ) of the body in 
comparison with large inertance (or acoustic stiffness ραρ EAA =⋅ ) of the waveguide and values of 

( )vF fr . So, as indicated in [13], the problem of integration the equation with small coefficient before the 
senior derivative is singularly perturbed, the autovibrations are of relaxation type, and have nearly 
discontinuous velocities. 

Beginning from the classic works by A. Poincare and A.M. Liapunov, the so called regular type of 
equations 

 
( ) ( )10,,, ≤≤= txxtFx ε&&&      (16) 

 
was analyzed in details. Here, it is assumed that right-hand term regularly depends on the parameter ε  in the 
vicinity of 0=ε  and the solutions are studied inside the segment 10 ≤≤ t . However the equation solutions 
become less regular and more diversified when the small parameter 10 <<< ε  occurs before the second 
derivative 
 

( ) ( ).10,, ≤≤= txxtFx &&&ε      (17) 
 
In this case, the influence of the left-hand member on the solution becomes significant only for large 

values of x&& , related to the states of fast change in the system motion. So, the distinguishing property of these 
type equations is that they have periodic solutions in the shape of nearly broken straight lines or saw tooth 
curves. 

Ultimately, one more feature of Eq. (14) is that it includes the delay argument ( )αα /2Lt −− . By 
virtue of this, the system remembers the perturbations imposed previously on it with the α/2L  delay and is 
self-adjusted to quantized vibrations with time quantum ατ /2L=Δ  [14]. So, it is of interest to follow the 
evolution of the autovibration modes with the change in parameter v . 

Yet, the principal cause of the irregular dynamics agitation is non-linear frictional interaction between 
the movable body and foundation surface which is responsible for the antidumping and excitation of 
relaxation oscillations. Thus, mechanism of this kind interaction should be considered especially. 

 
Discussion of results. 
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Figure 1 − The mode of the bit auto-
oscillation ( mL 8000= , sradb /71.0=ω ) 
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In mechanics, the waveguiding autovibrational systems are rarely met. The sole example of the singularly 
perturbed problem in this field, which plays a large role in practical applications, is the problem about the 
torsional auto-oscillations of long drill strings at their rotation with angular velocity ω . Such vibrations are 
generated as a consequence of nonlinear frictional interaction of their bits with the bore-hole bottom surfaces 
at the rock cutting. Because of the fact that the bit (vibrating body) mass is much less than the drill string 

(waveguide) mass, the system has small inertance, 
the coefficient before the inertia member (the 
second derivative) of the corresponding vibration 
equation is very small and its solution has the shape 
of a broken line. In connection with the 
discontinuous character of the relaxation 
vibrations, they are dangerous for the strength of 
the bit and drill string. Yet, the structure of the 
equation, describing these phenomena, is 
complicated, there are no universal methods for 
their investigation, and because of this, they are 
poorly understood. 

Firstly, consider the homogeneous drill 
string 8000 m in length. The characteristic 
parameters used for its analysis are selected as 
follows: PaG 1010077.8 ⋅= , 

33 /108.7 mkg⋅=ρ . External and internal radii 
of the tube cross-section are mr 0841.01 =  and 

mr 0741.02 = , then 451012.3 mI z
−⋅= . 

One of the main features, influencing on the 
process of the bit torsion vibration, is the law of the 
friction moment frM  dependence on the total 

velocity ϕω &+  of its rotation. The shape of function ( )ϕω &+frM  is determined by many factors, what is 
more, the values of their parameters vary during the drilling process.  

In this reason, it is conceivable that no universal functions of this kind can be chosen for analysis of 
the system dynamics. The most commonly encounted relationships between frM  and ϕω &+  are represented 
by the Coulomb friction law shown in. It is used in our investigation for analysis of general regularities of 
autovibration proceeding. In its diagram, the vertical segment determines the static friction moment stM , it 
is realized in the absence of sliding between bodies. After achieving some limit value limM , the static 
friction moment stM  is replaced by the dynamic friction moment dynM , which is accompanied by sliding 

between rubbing surfaces. then, the friction moment frM  can be represented with the aid of the following 
approximate function [10] 
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where the coefficients ( )9,...,2,1=iai  are found by the trial-and-error method. For the considered cases 

they have the following values: ,24001 smNa ⋅⋅=  ,225 2
2 sa =  ,15000 3

3 smNa ⋅⋅=  ,1 5
5 smNa ⋅⋅=  

,4 7
7 smNa ⋅⋅=  9

9 130 smNa ⋅⋅−= , 025.0=k , 1000=m , mNM ⋅−= 41250lim , 

mNM fr ⋅⋅−= 4
min 1025.8 . 

The analysis of the bit dynamics was performed by integrating the appropriate equation by the Runge-
Kutta method with the initial conditions ( ) 00 =ϕ , ( ) 00 =ϕ&  for different values of ω . The integration step 

was selected to be st 610769.7 −⋅=Δ . 



 107

Figure 2 − The diagram of the angular 
velocity change ( mL 8000= , 

sradb /71.0=ω ) 
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The calculation results permit us to 
formulate some regularities. On the one hand, in 
the process of functioning, the drill string can be 
either in the states of stationary rotation or of 
torsional self-induced elastic oscillation, 
depending on the chosen regime of drilling. As this 
takes place, the value bω  of the angular velocity 
ω  corresponding to the bifurcation state of the 
limit cycle birth equals the value 

srad /71.0=ω , which conforms to the 
minimum point of the ( )ϕω &+frM  diagram. The 
regimes of motion with bωω <  are characterized 
by the stationary rotation without any oscillation 
when the system changes from its initial state  
( ) 00 =ϕ , ( ) 00 =ϕ&  to some quasi-static 

equilibrious state ( ) stt ϕϕ = , ( ) 0=tϕ&  and self-
induced vibrations do not take place. But during 
the system transition from outside to inside this 
diapason through the value bωω = , the Hopf 
bifurcation occurs and limit cycles appear together 
with the unstable stationary solutions 
( ) constt =ϕ , ( ) 0=tϕ& . 

The mode of the bit angular vibration in the result of bifurcation of the limit cycle birth 
( sradb /71.0=ω ) is shown in Fig. 1. It is realized with comparatively large period sT 115≈  and swing 

radD 35≈ . But the more interesting feature of this process is that the auto-oscillations are of the 
relaxational (nearly discontinuous) type and include time segments of fast and slow motions inside every 
period. 

The diagram of angular velocity ( )tϕ&  in the time diapason st 520380 ≤≤  is presented in Fig. 2. It 
illustrates a principally new, subtler peculiarity, which is unique only to waveguiding systems [14]. This 
feature consists in the fact that the self-excited oscillations proceed in the manner of quantized time and the 
time quantum duration τΔ  is equal to the time segment of the wave passing the path from the bit to the top 
end of the DS and backward, i.e. βτ /2L=Δ . 

Together with the phenomena of self-excitation of stationary auto-oscillations, the problem about 
transient processes under conditions of the moving body speeding up or braking represents certain interest. It 
can be imagined that if a DS begins to rotate with small constant angular acceleration ε , then it will 
gradually pass through the bifurcation velocity bω , enter into the diapason of auto-oscillations and 

afterwards again go out through the point lω  of limit cycle loss to the domain of pure rotation without 
oscillations. But the situation changes when acceleration ε  is not small. Then, owing to existence of the 
system inertance, all the observed effects can take place, though with some delay for homogeneous DS 1000 
m in length and angular acceleration 2/05.0 srad=ε ). The found effect becomes more visible with further 

ε  enlargement and for the values 2/5.0 srad≥ε  the auto-oscillation phenomena do not occur at all. 
 
Conclusions. 
The analysis of the limit cycle birth bifurcations in the models of homogeneous and sectional 

waveguiding systems is presented in this paper. The constitutive differential equations with delay argument 
are constructed, which are shown to be singularly perturbed. Based on analysis of an applied example 
associated with self-excitation of deep drill string torsion oscillation, one can draw the following 
conclusions: 
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1. The auto-oscillations of homogeneous and sectional DSs prevail at low values of the their angular 
velocity ω , the boundaries of the ω  segments of their self-excitation do not depend on the number of the 
DS sections and are determined by the outline of the friction moment function. 

2. The autovibrations are of the relaxation type and contain fast and slow motions. 
3. The self-excited oscillations proceed in the manner of quantized time. The time quantum durations 

equal the time of the torsional wave propagating through the doubled length of the DS. 
4. The velocity - time quanta in sectional drill strings have additional fragmentations caused by the 

multiple diffractions of the torsional waves at the points of the section joints. 
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РЕФЕРАТ 

Глушакова О.В. Релаксаційні автоколивання крутіння глибоких бурильних колон. /  
О.В. Глушакова // Вісник Національного транспортного університету. Серія «Технічні науки». 
Науково-технічний збірник. – К. : НТУ, 2015. – Вип. 1 (31). 

Розглянута проблема про самозбудження крутильних коливань бурильних колон в результаті 
фрикційної взаємодії долота з руйнівною породою. 

Об'єкт дослідження − ефекти біфуркаційного переходу від стаціонарного обертання бурильної 
колони до автоколивань крутіння і назад. 

Мета роботи − дослідити біфуркаційні стани бурильних колон, що обертаються, і побудувати 
моди автоколивань. 

Метод дослідження − метод чисельного інтегрування рівнянь крутіння в перед- і пост-
критичних станах. 

КЛЮЧОВІ СЛОВА: ХВИЛЕВОДНІ СИСТЕМИ, СИНГУЛЯРНО ЗБУРЕНІ ЗАДАЧІ, 
САМОЗБУДЖЕННЯ КОЛИВАНЬ, БІФУРКАЦІЯ ХОПФА, РЕЛАКСАЦІЙНІ КОЛИВАННЯ. 

 
ABSTRACT 

Glushakova O.V. Relaxational torsional autovibrations of deep drill strings. Visnyk National 
Transport University. Series «Technical sciences». Scientific and Technical Collection. – Kyiv: National 
Transport University, 2015. – Issue 1 (31). 

In this paper the analysis of the limit cycle birth bifurcations in the models of homogeneous and 
sectional waveguiding systems is presented. The constitutive differential equations with delay argument are 
constructed, which are shown to be singularly perturbed. Based on analysis of an applied example associated 
with self-excitation of deep drill string torsion oscillation, one can draw the following conclusions: 

The auto-oscillations of homogeneous and sectional DSs prevail at low values of the their angular 
velocity ω , the boundaries of the ω  segments of their self-excitation do not depend on the number of the 
DS sections and are determined by the outline of the friction moment function. 

The autovibrations are of the relaxation type and contain fast and slow motions. 
KEYWORDS: WAVEGUIDING SYSTEMS, SINGULARLY PERTURBED PROBLEM, SELF-

INDUCED VIBRATIONS, HOPF’S BIFURCATION, RELAXATION VIBRATIONS. 
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РЕФЕРАТ 
Глушакова О.В. Релаксационные автоколебания кручения глубоких бурильных колонн. /  

О.В. Глушакова // Вестник Национального транспортного университета. Серия «Технические науки». 
Научно-технический сборник. – К. : НТУ, 2015. – Вып. 1 (31). 

Рассмотрена проблемма о самовозбуждении крутильных колебаний бурильных колонн в 
результате фрикционного взаимодействия долота с разрушаемой породой. 

Объект исследования − эффекты бифуркационного перехода от стационарного вращения 
бурильной колонны к автоколебаниям кручения и обратно. 

Цель работы − исследовать бифуркационные состояния вращающихся бурильных колонн и 
построить моды автоколебаний. 

Метод исследования − метод численного интегрирования уравнений кручения в пред- и пост-
критических состояниях. 

КЛЮЧЕВЫЕ СЛОВА: ВОЛНОВОДНЫЕ СИСТЕМЫ, СИНГУЛЯРНО ВОЗМУЩЕННЫЕ 
ЗАДАЧИ, САМОВОЗБУЖДЕНИЕ КОЛЕБАНИЙ, БИФУРКАЦИЯ ХОПФА, РЕЛАКСАЦИОННЫЕ 
КОЛЕБАНИЯ. 
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