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Introduction.

A strategic objective of scientific—technical policy in the field of transportation system of the state is
achieving the world level in terms of technical parameters and services quality that are implemented in
transport. In this connection, the top priority for the transport sector is to expand scientific research into
creation of progressive technologies for the rational organization of cargo transportations, formation and
functioning of efficient transportation system, development of fundamentally new management systems
using modern information technologies [1, 2].

At present, Ukraine is beneficially different from other countries by the fact that a significant number
of its cities are located along traditional transportation and communication routes of the Eurasian continent.
The issue of the development of international transport corridors by Ukraine will accelerate not only
achieving the strategic goals of integration into the European Community, but also solving such tasks as
additional investments into development of the transportation infrastructure of the state, as well as increasing
volumes of products for export [1].

Transport in Ukraine is a powerful communication system, which includes all its types (water, road,
railway, pipeline, air). The main production funds of transport constitute about 20 % of the production funds
of the country [1]. Creating united international transport-logistic system, geographical position of the
transportation space of Ukraine, as well as existence of many international transport corridors require the
following [1, 2]: separate analysis of transport hubs management; provision of coordination and interaction
of all kinds of transport; implementation of modern achievements in scientific and technical progress in the
transportation operation.

Designing efficient delivery of cargos with the alignment of all the links of the transportation process
necessitated a large number of theoretical and experimental studies on various issues of development of
transport systems [1, 2].
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Relevance of the research is determined by the need to improve efficiency of the transportation of
goods in international traffic through the development and implementation of models, methods and software
for the rational organization of international freight traffic.

Literature review and problem statement.

Many scientific papers in the field of transportation systems, logistics and operations studies address
the solution of problems to increase efficiency of cargo transportation in international traffic. The main
characteristics of the transport networks [TN] include: maximum flow in the TN and the shortest distances in
the TN. To solve the problem of optimization of the TN, it is necessary to reduce a network representation of
the transport problem to the matrix form, for which there is practical mathematical apparatus. An analysis of
the literature data that we conducted revealed the following.

The existing methods for solving the problem of maximum flow in the TN are convenient to use only
for a flat network [3]. A new presented algorithm for the maximum flow allows the optimization of solution
to the problem, but it does not take into account the peculiarities of transport networks [4]. To solve the
problem, it is necessary to extend the method for solving the problems on the optimization of transport
networks with and without restrictions of the throughput capacity.

The algorithms of mathematical programming for designing a TN are developed, which allow finding
the optimal ways [5]. But such algorithms do not take into account the large number of intermediate points in
the TN. The proposed characteristics of transport in the multiplex system enable the optimization, but do not
allow the calculation of the shortest distances in the case of a large number of intermediate points [6].

The transportation problem in the matrix and network forms is presented by definition in equivalents
[7]. However, sometimes it is more convenient to solve a network problem in matrix form [8]. But we need
to improve these methods to solve complex network transportation problems using directed graphs in the
Excel environment.

In general, the problem of effective control over the international freight transportation process is in
the fact that the existing methods do not fully take into account specific features of their fulfillment and,
consequently, there is no a unified approach to determining the methods for the determination of optimal
characteristics of TN.

Improvement of the methods for reducing network representation of the transport problem to the
matrix form.

The transport problem in the matrix and network forms of representation are equivalent by definition.
However, sometimes it is more convenient to solve the network problem in the matrix form. There are two
main ways to reduce a network problem to the matrix form [6, 7].

We propose to solve the network transport problems in the Excel environment. A directed graph is
called a network, where the following are determined:

—node-source that has only the output arcs (denoted by letter s from "source");

— node-runoff that has only the input arcs (denoted by letter #, from "terminal" — final destination);

— all other nodes — intermediate (transit), interconnected by arcs, which include the input and output
arcs.

Directed arcs in the network are marked with arrows, non—directed arc is replaced with two arrows
facing each other. Arc with arrow and a certain value of the appropriate parameter specifies universal
concept — flow that moves from the initial node of the arc to the final node. The objects of flows in practical
problems are the cargos, gas, passengers, vehicles, communication signals, fluids, etc.

Most of the optimizing problems in networks are the problems on flows in the networks (network flow
problems) [7, 8]. For the network optimization problems, a fundamental principle is the principle of
maintaining the flow at any node, particularly, the total of flows F;,«(x) at the node output is equal to the total
of flows at its input Fy(x) + potential p(x) of node (+ proposal/ —demand), for example:

— node—source s: Fyx(s)=0+p(s)=P, where P is the magnitude of total flow along the network;
potential p(s)=+P;

— node—runoff t: F;,(t)=P+p(t)=0 because potential p(t)=—P;

— intermediate node x: Fyx(X) = Fux(X) + p(x).

A flow in each node of the network is function that satisfies linear equations and inequalities, where
each arc (x;, X;) of the network is in line with one or more positive numbers. For example, magnitude d(x;, X;)
in the problem on maximum flow is the throughput capacity of the arc (maximum amount of product that can
be delivered with node x; to node x; along this arc per unit of time); in the transport problem, this is the
distance or the cost of transportation. Hence the magnitude of flow along arc (x;, xj) does not exceed
throughput capacity of this arc d(x;, x;) if it is set.
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The purpose of the study is the reduction of network representation of the transport problem to the
matrix form that will allow us in future to solve the problems of cargo transportation optimization. Fig. 1
displays TN without limitation for the throughput capacity; Fig. 2 presents TN with limitations for the
throughput capacity.
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Figure 1 — Example of TN without limitation in Figure 2 — Example of TN with limitation in the
the throughput capacity throughput capacity

Fig. 1, 2 display networks with 7 vertices and 11 links. Next to the corresponding vertex in
parentheses is the number with a plus sign that indicates the volume of production while the volume of
consumption is, respectively, denoted by the number with a minus sign. The cost of cargo transportation is
written down in each arc, where the denominator of fraction demonstrates throughput capacity of separate
links in the network. Fig. 1, 2 presents distributions of cargo flows and potentials.

Production volume is equal to the throughput capacity of the arc, that is,

a=d, (1)

For the arcs whose throughput capacity is unlimited, in particular for arcs 3-7 and 7-3, it will
correspond to the known big number.
The volume of consumption for producing vertices of the network is determined by formula:

b,=>d, —a(x). (2)

=i

For the vertices that consume cargo — by formula:

b,=>d, +b(x). 3)

j#i

For transit vertices, by formula:

by=>d,. “)

=

The first way is the improvement of the method Ordena [9, 10], shown in Table 1. Every vertex of the
network shown in Fig. 1 is assigned with a line and a column. Thus, in our case, the table consists of seven
lines and seven columns. It should always be square. In the cells of the main diagonal in Table 1, the cost of
transportation is equal to 0, because the output and, at the same time, input arcs to the same vertex cannot
exist.

For the vertices, interconnected by a link, in the cells of the table at the crossing of the corresponding
lines and columns is the cost of transportation by this link. Other cells are blocked by the numbers that are
larger than the costs of transportation (in Table 1, it is 99).

For convenience of the calculation, the value of production (consumption) volume at each vertex is
added with any positive number. In Table 1, it is number 9. Thus, the volume of production in vertex 1 will
equal 7+9=16; in transit vertex 2 — 9, similar to the volume of consumption; the volume of consumption in
vertex 3 will equal 1+9=10, etc. Then the transport problem is solved by any known tabular method, for
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example, the method of potentials. In Table 1, values of the optimal plan of cargo transportation are in
italics, in Fig. 1 — arrows.

The second way is improving the Wagner method [10]. It is more convenient for the networks with
throughput capacity limitations. Such a network is depicted in Fig. 2, where an optimal plan of transportation
is also presented. Table 2 demonstrates reducing this network to the matrix form.

Table 1 — Reducing a network transport problem Table 2 — Reducing a network problem to the
to the matrix form by method Ordena matrix form by the Wagner method
Ne | 1 2 3 4 5 6 7 > Ne 1 2 3 4 | 5 6 7 >
0L 14 161 130 199 | 99| 99 | 1 0 |4
1 ol 12l 1 4 1-2 7] 0 9999 9| 9|1
0 3
2| 4 21 9| 2 5191 9 9] 2| 4 |© NI
99 [0
3| 6 4 [ 99 [ 12109 3|0 6
9 13| T 99| V99 99 99| 99 | 2
65| 99 | 99| 99 | 99| 5 99 | 2
51 99| 3|99 |99 (o 5| 99|09 - [2] g
67| 99 | 99 | 99 |99 | 99 7
699 |99 | 12| 3 |5 g0 [1] [
5 76| 99 [ 99| 99 |99 99| 5 |9 7
70199099 10| 9| 9 | 5 5] 9 7
|1 9 107 | 17 7 | 18 | 113 | 72
Lol 9o 10| 9| 11| 9| 15]|72

Arcs here are in lines, the vertices are in columns. In the upper—left corner of the table cell is the cost
of transportation along the arc. The cells that contain no digits are supposed to be blocked by the numbers
that are larger than the costs of transportation (in Table 2, it is 99).

Production volume is equal to the arc's throughput capacity (1). For the arcs whose throughput
capacity is unlimited, in particular, arcs 3—7 and 7-3, it corresponds (in our example) to a number of 100.

Consumption volumes for the production vertices of the network are determined by formula (2), for
the vertices that consume the goods — by formula (3), and for the transit vertices — by formula (4).2

Thus, for vertex 1, the volume of consumption is equal to 1+5+2—7=1, for vertex 7 — 7+100+6=113,
and for vertex 2 — 1+5+3=9.

Table 2 also shows the final result of solving the problem — the optimal plan for the transportation of
cargo, which is represented in the form of italicized values that correspond to the flows in Fig. 2.

Improvement of the methods of searching for the shortest distances in the TN.

Often, when solving practical problems, there is a need to show the links between certain objects.
Directed and non-directed graphs, which are referred to in the scientific literature as networks, are a
natural model for the implementation of such links [7, §].

Let us consider the problem of searching for the best route in terms of the smallest distance. This
problem is naturally modeled using networks, that is, we have connected network G, in which positive
weight of each edge is equal to its length. Length of the path in such a network is equal to the sum of
lengths of the edges that form this path. In the terms of networks, the problem is reduced to finding the
shortest path between two set vertices of graph G [7, 8].

The problems on the shortest paths belong to fundamental problems of combinatorial
optimization, because many of them can be reduced to finding the shortest path in a network. There
are different types of problems on the shortest path: (1) between two given vertices, (2) between a
given vertex and all others, (3) between each pair of vertices in the network, (4) between two given
vertices to the paths that pass through one or more of the specified vertices; (5) the first, second, third,
etc. shortest path in a network. Of all the described types, the most interesting for solving the network
transport problems are the first three. In this case, the first two of them are realized using the
Dijkstra's algorithm varieties [4], and the third one by using the Floyd algorithm [5].

Let us assume there is directed graph G=(V, E) whose all arcs have positive marks (arcs costs).
It is possible to represent graph G in the form of map of route flights from one city to another, where
each vertex corresponds to a city, and arc v—w to the shuttle route from city v to city w (Fig. 4). The
mark of arc v—w is the flight time from city v to city w. In this case, one can assume that in this case
the model matches a non-directed graph because the marks of arcs v—w and w—v may coincide. But
the flight time is mostly different in opposite directions between two cities. In addition, assumption
about coincidence of the marks of arcs v—w and w—v does not affect essentially the solution of the
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set problem. In this case, the solution of the problem on finding the shortest path will be minimum
time of flights between different cities.

Method of graphs. Our initial data for this method are the known specified directed graph G(V,
E), shown in Fig. 3. In this case, the whole set of its vertices V is divided into two subsets. The first
subset includes the cities of departures (m of cities), and the second subset includes the cities of
airplanes landing (n of cities).

Table 3 — Matrix of the shortest distances
between departures and landings
10 100
Indicators A/p of landings
A 0 A5
50 10

Ne 1 2 . n
1 Cn Cp . Cipn
A/p of
60
departures 2 Cy | Cyu| ... | Cu
20 0 m | Cy | Cp | ... | G

Figure 3 — Directed graph with marked arcs

To resolve this problem, existing algorithms may not be applied because the Dijkstra's algorithm is
insufficient (according to it, we find only one line from the matrix of the shortest distances), and the
Floyd algorithm is excessive (it generates matrix of the shortest distances between any a/p, that is, m+n to
m+n).

It is necessary to find the shortest routes for flights between the airports (a/p) of departures and
landings, including landings at intermediate a/p (they can be both a/p of departures and a/p of landings
of airplanes). In other words, we must receive the matrix of the shortest distances between the a/p of
departures and the a/p of landings (Table 3).

That is why we consider a fundamentally new algorithm, shown in the listing of program from a
pseudo code, which is presented below and in which:

procedure New( var D: array[l .. m, 1 .. (m + n)] of real; C: array[] .. (m + n), 1 .. (m + n)] of real;
P: array[1l .. m, 1.. (m + n)] of integer);

begin
(1) fori:=1tomdo
begin
S = {i}; {selecting the next vertex from the subset of a/p of departures}
forj:=1to (m+n)do
begin
D[, j] := C[41, j]; { D initialization }
Pli, j] =1
end
2) forj:=1to(m+n-1)do
begin
selecting such vertex w from set V\S that value D[i, w] minimal;
add wto set S;
for each vertex v from set V\S do
begin
if (D[i, w) + C[w, v] < D[i, v] then P[i, j] :== w;
D[i, v] = min(D[1, v], D([i, w] + C[w, V] );
end
3) end
4) end
end; { New }

— array D is the resulting matrix of the shortest distances, and at every step element D[i, v] contains
length of the current shortest path from vertex i to vertex v;

— array C specifies distances of the flights, where element C[i, j] is equal to the cost of arc i—j. If
arc i—j does not exist, then C[i, j] equals « (infinity), that is, larger than any actual cost of arcs;

— element of array P[i, v] contains the number of vertex, preceding vertex v in the shortest path
from vertex i;

— set S means the same as in the Dijkstra's algorithm, namely a sequence of vertices of the
"special" shortest path.
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In the external loop (lines 1-4), we sequentially select all a/p of departures, and in the internal one
(lines 2-3) we find the shortest routes from these a/p to all others, and if, along this route, the
intermediate vertices are available, they are remembered.

An analysis of the commonly known network algorithms for constructing the shortest paths
between the vertices of directed graph reveals that the proposed new method for constructing the shortest
paths between specified sets of vertices in the network has the following advantages:

— it fully solves the set problem that could not fundamentally be solved using the Dijkstra's
algorithm, due to the lack of obtained results;

— it solves the problem of finding the shortest paths between the given infinities of vertices in the
network more effectively, that is, easier and faster, compared to, though adequate but redundant, results,
that we receive, using the Floyd algorithm.

The new algorithm for constructing the shortest paths between specified sets of vertices in the
network was implemented in the form of software package, which was verified at a large number of
examples, thus proving its reliability and universality in the network transport tasks of large dimensions.

The matrix method. First, we compile adjacency matrix S of the known graph G=(V, E) shown in
Fig. 3. The lines of matrix S correspond to vertices V; (j=1,5), columns — vertices V; (j=1,5) . Element
S;i, which is located at the intersection of the i—th line and the j—th column, is assigned equal to the value
that is set on the corresponding arc E; between vertices V; and V; and 0 — in the absence of direct link
between them (Table 4).

Next we determine matrix S’=S+$ by the following rule of adding elements of matrices S:

S =min{ Zn: S, +S,)}.provided ((S, xS,)#0)(i=1n;j=1n) . (5)

k=1

Upon completion of the formation of all matrices S™, we define matrix D — resulting matrix of the
shortest paths between vertices V; and V; of graph G whose elements are calculated by the following
formula:

Dijzmin{S:j-"SiT},anS:j“'SiTio. (6)
Table 4 — Matrix S
Ne 1 2 3 4 5

1 0 10| O 30 | 10
2 0 0 50 | O 0
3 70 | O 0 0 10
4 0 0 |20 O 0
5

0 0 0 |60 | O

Described new method for finding the shortest paths on directed weighted graph by its functional
capabilities is fully comparable to the Floyd method. It should also be noted that the new method
described, similar to the Dijkstra's algorithm with its various modifications and the Floyd algorithm, may
also be used when processing the network models of representation of cargo transportation in TN of
various structure [8, 11].

A new method for constructing the shortest paths between different sets of vertices on a graph,
which we examined, is also implemented as a software package.

The method of graphs. Tables 5—7 present matrices C, D and P, respectively, obtained by using a
new algorithm for directed graph, shown in Fig. 3, which mean the following:

—array C assigns distances of flights;

—array D is the resulting matrix of the shortest distances;

— element of array P[i, v] contains the number of the vertex, preceding vertex v along the shortest
path from vertex i.

Table 5 —Matrix C ‘ 5 | 0 ‘ o ‘ 0 ‘60| 0 ‘

Indicators A/p of departures and landings
Ne 1 2 3 4 5

Alp of 1 | o |10 | o |30 | 10
departures > 50 .
and © | *® © | ® Table 6 — Matrix D
landings 3 170 ] o | o | » |10 X ;
2 - % 120 | - Indicators A/p of departures and landings

A/p of Ne

12 ]3]4]s5
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departures 1 o | 10 | 50 | 30 | 60 Ne | 1 2

2 [ 12| o [ 50| 12] 60 Alp of
departures

w
N
W

Table 7 —Matrix P

‘ Indicators ‘ A/p of departures and landings |

Using data from matrix P, it is possible to build the routes of flights from each a/p of departures (1
and 2) to each of the a/p of landings (3, 4 and 5):

30 20 30 30 20 10

1—-4—-3 =50 1—4 =30 1-4—-53->5 =60
50 50 10 60 50 10

2—3 =50 2—-53->55-4 =120 2—>3->5 =60

The matrix method. Using formula (5), we determine matrices S>=S+S, S*=S+S” and so on, until the
last resulting matrix does not contain any zero (Tables 8, 9).

Table 8 — Matrix S* Table 9 — Matrix S

Ne 1 2 3 4 5 Ne 1 2 3 4 5
0 0 |50 | 160 0 430 | 310 | 520 | 300 | 370
120 | O 0 0 60 620 | 470 | 320 | 460 | 560
0 80 | O 70 170 340 | 580 | 430 | 570 | 280
90 0 0 0 30 590 | 440 | 290 | 430 | 530
0 0 |80 0 0 490 | 340 | 580 | 330 | 430

N [WIN|—
N[ [WIN|[—

Elements of matrix S} determine length of the shortest path between vertices V; and V; that

contains m links (arcs).

In the process of forming matrices S, we obtain matrix P whose elements are the quantities of
arcs that make up the shortest paths between vertices V; and V; of graph G (Table 10).

Upon completion of the formation of all matrices S™, we define matrix D (Table 11) — the resulting
matrix of the shortest paths between vertices V; and V; of graph G, whose elements are calculated by formula
(6).

In the end, by analyzing the contents of Tables S...S™ P and D, we build routes for the shortest
paths between all vertices V; and V;of graph G.

Table 10 — Matrix P Table 11 — Matrix D
Ne 1 2 3 4 5 Ne 1 2 3 4 5
1 3 1 2 1 3 1 120 | 10 50 30 60
2 2 3 1 3 2 2 | 120 | 130 | 50 | 120 | 60
3 1 2 3 2 1 3 70 80 90 70 10
4 2 3 1 3 2 4 90 | 100 | 20 | 90 30
5 3 4 2 1 3 5 [ 150 | 160 | 80 60 90

Improvement of the method for maximum flow.

Improvement of the method for maximum flow is conveniently resolved by the method of trees [9,
10]. Let us explore this method on the example of TN with a node—source and a node-runoff (Fig. 4).

It is necessary to find maximum flow from point 1 to point 6.

Let the links of the network experience permissible two—way motion and their throughput capacity in
both directions of motion is the same. The entire network is divided arbitrarily into two trees. One is point 1
(source) and the other one is point 6 (runoff). In Fig. 5 one tree consists of four edges 1-2, 1-3, 1-4 and 3-5;
the second one is from one vertex 6.
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oD o e
N

Figure 4 — Transport network with node—source Figigure 5 — Step 1 of finding maximum flow in
(1) and node—runoff (6) TN by the tree method
First, let the flow between vertices 1 and 6 equals zero. Then the trees are connected by arc shown in

dotted line 5-6 (Fig. 5). In this regard, from vertex 1 to vertex 6, flow ©; may pass, equal to the minimum
throughput capacity of one of the arcs. In Fig. 5, there are 2 links with minimal throughput capacity — 3-5
and 5-6. Let the flow equal to 1 pass along route 1-3—-5-6. Next, one of the links (we select, for example, 5—
6) is eliminated from the network, and we marking this action with a cross in Fig. 6.

6 2
Figure 6 — Step 2 of finding maximum flow in TN Figure 7 — Step 7 of finding maximum flow in TN
by the tree method by the tree method

The network is again split into two trees. The first one includes vertices 1, 2, 3, 4, 5, and the second

one — vertex 6. Let us connect them by link 4-6 (Fig. 6), along which additional flow ©, may pass. Its size,

due to the minimal throughput capacity of links of route 1-4-6, is equal to 2. Let this flow pass and then
exclude in subsequent transformations link 4—6 from the network.

By continuing the same transformations over TN links, we receive at the last step 7 in Fig. 7 the
maximum flow in the network, equal to 8. The crossed out links determine minimum section in the network
that separates source (vertex 1) and runoff (vertex 6) and whose throughput capacity equals the maximum
flow.

Discussion of results of the research into the impact of indicators of TN on the solution of the
problems on maximum flow and the shortest paths in TN.

Improvement of the method for maximum flow is conveniently resolved by the method of trees. The
solution can be applied to the problem with multiple sources and runoffs. This will solve problems for the
optimization of transportation networks with and without limitations of their throughput capacity.

The improvement of the method for the shortest paths is resolved by using the modified Dijkstra's
algorithm. Solving the problem on finding the shortest path, in addition to the value of the shortest distance
from a given vertex to all others, we obtain the shortest route, in particular, a list of vertices that it passes. It
might be used for imposing flows on the networks. By having matrix of correspondences of freight traffic
from each vertex to all others, we build a tree of the shortest paths and then, returning from each point of
unloading by the shortest route, we summarize flows at the arcs of the network. Going from one vertex to
another vertex, we receive density of traffic in the network without limitation in the throughput capacity.
This technique might be used to determine actual density of traffic in the network in the static state.

The improvement of the methods for reducing a network representation of the transport problem to
the matrix form is carried out by the more effective modified Dijkstra's method that has algorithmic and
software provision of its implementation [12].

Studies we conducted were performed within the framework of implementation of applied work by
requests from motor transport enterprises of the Association of International Automobile Carriers of Ukraine.
The results might be used to optimize the routes of transportation of cargoes and the optimization of carriers'
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loading. Further studies may be extended in the direction of optimization of multimodal transportation of
goods by different types of transport.

Conclusions.

1. It is proposed to improve the method for maximum flow in the transportation network through the
use of the method of trees. The solution can be applied to a problem with multiple sources and runoffs. This
will solve the problems on the optimization of transportation networks with and without limitations in
throughput capacity.

2. We proposed an improved method for building the shortest paths in a transport network between
different sets of vertices on the graph, namely, sets of providers and consumers. The method is
implemented in the form of software package that might be used for the transport problems of large
dimensionality.

3. We defined a conversion mechanism for the network models of the process of cargo transportation
in the matrix model, which are set in the form of directed graphs and which allow the transportation of cargo
through intermediate transportation nodes.

MNEPEJIIK IOCHUJIAHb

1. Ilpokyain, I'.C. Ontumizauis nepeBe3eHb Ha JIOpPOXHbO-TpaHcropTHOi mepexi [Tekcr] / I'.C.
[Ipoxynun // Exonomika i ynpasmiaas. — K.: €Y. —2006. — Ne3(4). — C. 54-59.

2. Teodorovic, D. Transportation Systems [Text] / D. Teodorovic, M. Janic // Transportation
Engineering. — 2016. — N2. — P. 5-62.

3. Cormen, T. H. Section 26.2: The Ford—Fulkerson method [Text] / T.H. Cormen, C.E. Rivest, R. L.
Stein // Introduction to Algorithms (Second ed.). MIT Press and McGraw—Hill. — 2006. — P. 651-664.

4. Knight, H. New algorithm can dramatically streamline solutions to the 'max flow' problem [Text] /
H. Knight // MIT News. —2014. — P. 21-26.

5. Cancela, H. Mathematical programming formulations for transit network design [Text] / H.
Cancela, M. Mauttone, E. Maria // Transportation Research. — Part B: Methodological. —-V.77. — 2015. — P.
17-37.

6. Pu C. Information trasport in multiplex networks / C. Pu, S. Li, X. Jian Yang, K. Wang [Text] //
Statistical Mechanics and its Applications. — V.477. —2016. — P. 261-269.

7. Cunrx, S. Various Method to Solve the Optimality for the Transportation Problem [Text] / S.
Cunrx, G. C. Dubey, R. Shrivastava // Statistical Mechanics and its Applications. — V.12. — 2016. — P. 161-
169.

8. Wu, J. Topological Effects and Performance Optimization in Transportation Continuous Network
Design [Text] / J. Wu, X. Guo, H. Sun, B. Wang // Mathematical Problems in Engineering. — V.2. — 2014. —
P. 51-68.

9. Zou, Y. Reachability of higher-order logical control networks via matrix method [Text] / Y. Zou,
J. Zhu // Applied Mathematics and Computation. — V.287. —2016. — P. 50-59.

10. Kavita G. An algorithm for solving a capacitated indefinite quadratic transportation problem with
enhanced flow [Text] / G. Kavita // Yugoslav Journal of Operations Research. — V.24, — 2014. — P. 217-236.

11. Ilpokyain I'.C. IlepeTBOopeHHsI MepeKeBUX MOJENEH MPOLECYy BAHTAXKHUX IIE€PEBE3EHb Y MAaTPUUHI
mozaem [Texkcr] / I'.C. Ilpoxymin, O.A. UYynaiinenko, O.C. Hymauk, O.I'. Ilpokymin, .M. Omapos //
YrpaBiiHHS IPOSKTaMH, CUCTEMHUH aHami3 i jorictuka. HaykoBuii sxypHan. Bumyck 16. Yactuna 1. Cepist:
Texniuni Hayku. — K.: HTY. —2016. — C. 125-136.

12. Prokudin G. Improvement of the Methods for Determining Optimal Characteristics of
Transportation Networks / G. Prokudin, O. Chupaylenko, O. Dudnik, A. Dudnik, D. Omarov // Eastern-
European Journal of Enterprise Technologies. 2016. N. 6/3 (84). P. 54-61. (ISSN 1729-3774,
DOI:10.15587/1729-4061.2016.85211).

REFERENCES

1. Prokudin, G. (2006). Optimization of traffic on a road networkin. Economy and management, 3(4),
54 — 59 [in Ukrainian].

2. Teodorovic, D., Janic M. (2016). Transportation Systems. Transportation Engineering, 2, 5-62 [in
English].

3. Cormen, T., Rivest, C., Stein, R. (2006). Section 26.2: The Ford—Fulkerson method. Introduction
to Algorithms (Second ed.) // MIT Press and McGraw—Hill, 651-664 [in English].

4. Knight, H. (2014). New algorithm can dramatically streamline solutions to the 'max flow' problem.
MIT News, 4, 21-26 [in English].

270



HaykoBo-TexHi4Hui 36ipHMK «BicHMK HalioHanbsHOro TpaHCNoOpPTHOIO YHIBEPCUTETY»

5. Cancela, H., Mauttone, M., Maria, E. (2015). Mathematical programming formulations for transit
trasport design. Transportation Research. Methodological, 77, 17-37 [in English].

6. Pu, C, Li, S., Yang, Y., Wang, K. (2016). Information trasport in multiplex networks. Statistical
Mechanics and its Applications, 477, 261-269 [in English].

7. Cunrx, S., Dubey, G. C., Shrivastava, R. (2016).Various Method to Solve the Optimality for the
Transportation Problem. Statistical Mechanics and its Applications, 12, —2016. — P. 161-169 [in English].

8. Wu, J., Guo, X., Sun, H., Wang, B. (2014). Topological Effects and Performance Optimization in
Transportation Continuous Network Design. Mathematical Problems in Engineering, 2, 51-68.

9. Zou, Y., Zhu J. (2016). Reachability of higher-order logical control networks via matrix method.
Applied Mathematics and Computation, 287, 50-59 [in English].

10. Kavita G. (2014). An algorithm for solving a capacitated indefinite quadratic transportation
problem with enhanced flow. Yugoslav Journal of Operations Research, 24, 217-236 [in English].

11. Prokudin, G., Chupaylenko, A., Dudnik, O., Prokudin, A., Omarov, D. (2016). The conversion
process network models of freight transport in the matrix model. Project management, systems analysis and
logistics. Science journal, 16 (1), 125 — 136 [in Ukrainian].

12. Prokudin, G., Chupaylenko, A., Dudnik, O., Dudnik, A., Omarov, D. (2016). Improvement of the
Methods for Determining Optimal Characteristics of Transportation Networks. Eastern-European Journal of
Enterprise Technologies. 6/3 (84), 54-61 [in English].

PE®EPAT

Ipoxynin I'.C. Meroau BHU3HAYCHHS ONTUMAIBHHUX XapaKTEPUCTHK TPAHCIOPTHHX MEPEK
/ T'.C. llpokynin, O.A. Yynaiinenko, O.C. lynnuk // Bicauk HanioHaabHOT0 TpaHCHOPTHOTO YHIBEPCHUTETY.
Cepis «Texniuni Haykn». HaykoBo-texniununii 306ipauk. — K. : HTY, 2018. — Bum. 1 (40).

CTpaTeriuHol0 MeTOI0 HAayKOBO-TEXHIYHOI IMOMITHKH y cdepi TPAaHCIOPTHOI CHCTEMH IEp)KaBU €
TOCATHEHHS CBITOBOTO PiBHS 3 TOUKH 30pY TEXHIYHUX MAapaMeTpPiB Ta SIKOCTI MOCIYT, sIKi BIIPOBAKYIOTHCS B
TpaHcrnopt. ToMy BUpIIIEHHS MPOOJIEMU CTBOPEHHS MPOTPECUBHUX TEXHOIOTIH paIliOHaIbHOI OpraHizamii
[IEPEeBE3€Hb BAHTAXKIB € aKTYaJIbHUM.

OO6’€exT NOCTIDKEHHS — XapaKTePUCTUKN TPAHCIIOPTHUX MEPEXk, Ha SIKUX 3A1HCHIOIOTHCS IMPOLECH
MIEPEBE3CHHS BAHTAXIB.

Merta pobOTH — YyJOCKOHAJCHHSI METO/AIB BHU3HAYCHHS ONTUMAJIbHUX XapaKTEPUCTHK TPAHCHOPTHUX
MepexK, Ha KX 3[1HCHIOIOTHCS MPOIIECH TIePEBE3CHHS BAHTAXKIB.

MeTon AOCTiIKEHHS — aHaJli3 TOMOJIOTIYHUX XapaKTePUCTHK rpadis.

HocnigkeHo mporec TPaHCHOPTYBaHHS BaHTaXIB y MEPEKEBOMY NPEACTaBICHHI 3 METOIO
YAOCKOHAJIEHHS 1CHYIOUMX METOMAIB BM3HAYEHHS ONTHMAJIbHUX XapaKTEePUCTUK TPAHCIOPTHHX MEPEX.
BcranoBiieHO BILTMB TIOKa3HUKIB CTPYKTYPH MEPEXKi, HAMPSIMY PyXy 1 IPOIYCKHOT 3/]aTHOCTI TPaHCTIOPTHHX
KOMYHIKaIliif Ha BH3HA4YeHHS (PaKTHYHOI MIIIBHOCTI PyXy Ha TPAaHCIOPTHIM Mepexki B CTaTUYHOMY CTaHi.
Bu3HaueHO MexaHI3M INEpeTBOPEHHS MEPEKEBUX MOJEJell IPOLECY BaHTAKHUX IIEPEBE3CHb y MaTpUUHI
MOJIeNTi, SKi 3aJaloThCsl Yy BHIUISAI OpieHTOBaHMX rpadiB 1 JOMYCKAaIOTh IEPEBE3CHHS BaHTaXy depes
MPOMIXKHI TPAaHCHOPTHI BY3JH.

Po3po0ieHo ygockoHaIeHUI METO MiAX04y A0 PO3PaxyHKY MakCHMAIbHOTO IOTOKY, SIKHM Toysrae
y BUKOPHCTaHHI METOZa JIePEeB 1 MOXKIMBOCTEH TaONIMYHUX MpouecopiB. Po3B's13aHHA MOKHA HOMIKMPUTH 1 Ha
3ajauy 3 KiIbKOMa JuKepelaamu 1 cTokamu. Lle 103BonuTh BUPIIINTH 3aa4l AJisl ONTUMI3allil TPaHCTIOPTHHX
Mepex 3 00MEeKEHHAM Ta 0e3 00MeKeHb MPOMYCKHOI 3JaTHOCTI.

Po3po0ieH0 yOOCKOHAJICHUI METOA IO PO3PaxyHKYy HAaWKOPOTLIMX WHUISXiB, SKMH BHPILICHO 32
JIOTIOMOTOI0  BHKOpPWUCTaHHs anroputMmiB MiHti 1 [eiiketpu. Po3B’sa3yrounm  3amady  3HAXOIKEHHS
HAHKOPOTILIOrO HUISAXY, OJEPKYEMO HAWKOPOTIIMKA MapuIpyT 1 MepesiK BepIIMH, Yyepe3 SiKi BiH TMPOXOIHTh.
Marouu MoKa3HUKH BaHTAKOMOTOKIB BiJl KOXKHOT BEPILIMHM A0 BCIX 1HIIMX, OyAy€EMO JepeBO HAWKOPOTLIMX
nuaxiB. Ilepexoasum Bif BepIIMHM 10 BEPIIWHHU, OAEPKYEMO TYCTOTYy PyXy Ha Mepexi 0e3 oOMekeHHS
MPOIYCKHOT 3/IaTHOCTI.

KirodoBi cioBa: TpaHCIOpTHAa Mepeka, MAaKCUMaJbHUN TPAHCHOPTHUHM MOTIK, HAHKOPOTIL LUIAXH,
MaTpUyYHa MOJIEIIb.

ABSTRACT
Prokudin G.S., Chupaylenko O.A., Dudnik O.S. Methods for determining optimal characteristics of
transportation networks. Visnyk National Transport University. Series «Technical sciences». Scientific and
Technical Collection. — Kyiv: National Transport University, 2018. — Issue 1 (40).
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The strategic objective of scientific—technical policy in the field of transportation system of the state
is achieving the world level in terms of technical parameters and services quality that are implemented in
transport. Therefore, solving the problem of creating advanced technologies for the rational organization of
cargo transportation is relevant.

Object of the study — the characteristics of the transport networks on which the processes of cargo
transportation are carried out.

Purpose of the study — to improve the methods of determining the optimal characteristics of the
transport networks in which the processes of cargo transportation are carried out.

Method of the study —analysis of topological characteristics of graphs.

The process of cargo transportation in the network representation was studied with the aim of
improving the existing methods of determining the optimal characteristics of transport networks. Influence of
indicators of network structure, direction of movement and throughput of transport communications on
determination of actual traffic density on the transport network in static state is established. The mechanism
of transformation of network models of the cargo transportation process into matrix models, which are
specified in the form of oriented graphs and allows the transportation of cargo through intermediate transport
nodes, i1s determined.

An improved approach to calculating the maximum flow is developed, which is to use the tree method
and the capabilities of the table processors. The solution can be extended to a task with several sources and
flows. This will solve the problems for optimizing transport networks with restrictions and without
bandwidth constraints.

An improved method for calculating the shortest path was developed, which was solved using the
Minty and Dyckstream algorithms. By solving the problem of finding the shortest path, we get the shortest
route and the list of vertices through which it passes. With the traffic flow rates from every vertex to all
others, we build the tree of the shortest paths. Moving from top to peak, we get traffic density on the network
without limiting bandwidth.

KEYWORDS: TRANSPORT NETWORK, MAXIMUM TRANSPORT FLOW, SHORTEST
PATHS, MATRIX MODEL.

PE®EPAT

[pokygua I'.C. Mertoapl ompeneneHus ONTHUMAIbHBIX XapaKTEPUCTHK TPAHCIOPTHBIX CeTel
/ T'.C. Ilpokymun, A.A. Uynaiinenko, A.C. [ymauk // Becthuk HaiuoHaapbHOr0 TpPaHCHOPTHOTO
yauBepcurera. Cepust «Texunueckue Haykm». Hayuno-texuuueckuit coopuuk. — K.: HTY, 2018. — Bpim. 1
(40).

Crpaternueckoll 1IeJbI0 HAYYHO-TEXHHYECKOW TOJIMTHUKH B cdepe TPaHCHOPTHOW CHCTEMBI
rocy/apcTBa SIBJISETCS AOCTHIKEHHE MHMPOBOIO YpPOBHS C TOYKH 3pPEHUS TEXHHYECKUX IapaMeTpoB U
Ka4yecTBa YCIYyT, BHEApstoTcs B TpaHcnoptT. [lostoMy pemieHue mpoOseMbl CO3MaHMS NPOIPECCHBHBIX
TEXHOJIOTUI PALIMOHAIBHOW OpraHU3alllK [IEPEBO30K I'PY30B SIBISETCS AKTYaJIbHbIM.

OOBEKT HCcCIeOBaHUsI — XapaKTEPUCTUKU TPAHCIIOPTHBIX CETel, Ha KOTOPBIX OCYLICCTBIISIOTCS
MIPOLIECCHI TIEPEBO3KU TPY30B.

Lenp pa®oTel — COBEpIICHCTBOBAHHUE METOJOB OIPEAETCHUS ONTUMANbHBIX XapaKTePUCTHK
TPaHCIIOPTHBIX CETEM, Ha KOTOPBIX OCYILECTBISIOTCS MIPOLIECCHI IIEPEBO3KU I'PY30B.

Merton uccae0BaHus — aHAJIN3 TONOJIOTHYECKUX XapaKTEPUCTHK rpadoB.

HccnenoBan mporecc TpaHCHOPTHUPOBKM TIPy30B B CETEBOM  NPEACTABIEHHUH C  LEIbIO
YCOBEPIIEHCTBOBAHUSA  CYIIECTBYIOIIMX  METOJOB  ONpEICNEeHUS  ONTHMAJbHBIX  XapaKTEpHUCTHK
TPAHCIOPTHBIX CETEH. YCTaHOBJIEHO BIUSHHUE IOKa3aTelel CTPYKTYphl CETH, HANpaBICHMs ABMKEHUS U
IIPOIYCKHON CHOCOOHOCTH TPAaHCHOPTHBIX KOMMYHHKALMi Ha onpeaeicHue (aKkTHUECKOH IUIOTHOCTH
IBWKCHHS Ha TPAHCMOPTHOM CETH B CTaTUYECKOM cocTosHUH. OIpeleneH MeXaHW3M NpeoOpa3oBaHuUs
CETEBbIX MOJEJEH Ipolecca I'Py30BbIX IIEPEBO30K B MAaTPUYHBIE MOJENH, KOTOpBIE 3aJal0TCsi B BUJE
OPHEHTHPOBAHHBIX I'PadoOB U JOIMYCKAIOT MIEPEBO3KY IPy3a yepe3 NIPOMEKYTOUHbIE TPAHCIIOPTHBIE Y3IIbL.

Pa3paboTtan ycoBepIIeHCTBOBaHHBII METOJ MOAXOAa K pacueTy MaKCHMAaIbHOTO IOTOKA, KOTOPBIH
3aKIII0YaeTCs B MCIOJIB30BAHUM METO/a JePEBhEB M BO3MOXKHOCTEH TaOIMYHBIX MpoLEeccopoB. Pemenue
MOKHO PacHpOCTPaHUTh M Ha 3aJauy C HECKOJbKHMHU HCTOYHMKAaMHM M CTOKaMH. OTO MO3BOJUT PELINThH
3aJaud A ONTHUMM3ALUHM TPAHCIOPTHBIX CeTel ¢ OrpaHMYeHHEeM U 0e3 OrpaHMYCHHUH IPOILyCKHON
CIIOCOOHOCTHU.

Pazpaboran ycoBepLICHCTBOBAaHHBIN METOJ MO pacyeTy HaWKOpPOTIIMX IyTeH, KOTOPBIH pEeLIeHo ¢
MOMOIIBIO UCMOJB30BaHUs aNropuTMOB MuHTH u JleWkcTphl. Pelas 3agady HaxoXXJIEHHsS KpaTdaiIiero
MyTH, TIOJlyd4aeM KpaTdyalMii MapmipyT M TepeueHb BEepIINH, Yepe3 KOTOphle OH MpoxomuT. Mmes
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